Outline	Definitions	Results	Conjectures

Wilf-equivalence of partial permutations

Alexander Burstein

Howard University aburstein@howard.edu

Permutation Patterns 2025 University of St. Andrews July 7-11, 2025

Joint work in part with Tian Han, Sergey Kitaev, and Philip Zhang

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline	Definitions	Results	Conjectures
•			

Outline	Definitions	Results	Conjectures
O	●OOO	0000	
Partial permutations			

$$A = (a_1, \ldots, a_m), \quad B = (b_1, \ldots, b_m).$$

A *k*-extension of a partial permutation (*A*, *B*) of size *j* is a permutation $\sigma \in S_k$ such that

 $\sigma(a_j) = b_j$ for each $j = 1, \ldots, m$.

This is defined for $k \ge m$.

A k-completion $(A, B)_k$ of a partial permutation (A, B) is the set of all k-extensions of (A, B).

For example,

- $((2,4),(1,2))_4 = \{3142,4132\},\$
- $((2), (1))_4 = \{2134, 2143, 3124, 3142, 4123, 4132\},\$
- $(A, B)_k = \emptyset$ for $k < \max(A \cup B)$,
- Skip inside parentheses where context is non-ambiguous, e.g. (24, 12)₃, (2, 1)₄

Outline	Definitions	Results	Conjectures
O	●OOO	0000	000
Partial permutations			

$$A = (a_1, ..., a_m), \quad B = (b_1, ..., b_m).$$

A *k*-extension of a partial permutation (*A*, *B*) of size *j* is a permutation $\sigma \in S_k$ such that

$$\sigma(a_i) = b_i$$
 for each $j = 1, \ldots, m$.

This is defined for $k \ge m$.

A k-completion $(A, B)_k$ of a partial permutation (A, B) is the set of all k-extensions of (A, B).

For example,

- $((2,4),(1,2))_4 = \{3142,4132\},\$
- $((2), (1))_4 = \{2134, 2143, 3124, 3142, 4123, 4132\},\$
- $(A, B)_k = \emptyset$ for $k < \max(A \cup B)$,
- Skip inside parentheses where context is non-ambiguous, e.g. (24, 12)₃, (2, 1)₄

Outline	Definitions	Results	Conjectures
O	●OOO	0000	000
Partial permutations			

$$A = (a_1, ..., a_m), \quad B = (b_1, ..., b_m).$$

A *k*-extension of a partial permutation (*A*, *B*) of size *j* is a permutation $\sigma \in S_k$ such that

$$\sigma(a_i) = b_i$$
 for each $j = 1, \ldots, m$.

This is defined for $k \ge m$.

A k-completion $(A, B)_k$ of a partial permutation (A, B) is the set of all k-extensions of (A, B).

For example,

- $((2,4),(1,2))_4 = \{3142,4132\},\$
- $((2), (1))_4 = \{2134, 2143, 3124, 3142, 4123, 4132\},\$
- $(A, B)_k = \emptyset$ for $k < \max(A \cup B)$,
- Skip inside parentheses where context is non-ambiguous, e.g. (24, 12)₃, (2, 1)₄

Outline	Definitions	Results	Conjectures
O	●OOO	0000	000
Partial permutations			

$$A = (a_1, ..., a_m), \quad B = (b_1, ..., b_m).$$

A *k*-extension of a partial permutation (*A*, *B*) of size *j* is a permutation $\sigma \in S_k$ such that

$$\sigma(a_i) = b_i$$
 for each $j = 1, \ldots, m$.

This is defined for $k \ge m$.

A k-completion $(A, B)_k$ of a partial permutation (A, B) is the set of all k-extensions of (A, B).

For example,

- $((2,4),(1,2))_4 = \{3142,4132\},\$
- $((2), (1))_4 = \{2134, 2143, 3124, 3142, 4123, 4132\},\$
- $(A, B)_k = \emptyset$ for $k < \max(A \cup B)$,
- Skip inside parentheses where context is non-ambiguous, e.g. (24, 12)₃, (2, 1)₄.

Outline	Definitions	Results	Conjectures
O	●OOO	0000	000
Partial permutations			

$$A = (a_1, ..., a_m), \quad B = (b_1, ..., b_m).$$

A *k*-extension of a partial permutation (*A*, *B*) of size *j* is a permutation $\sigma \in S_k$ such that

$$\sigma(a_i) = b_i$$
 for each $j = 1, \ldots, m$.

This is defined for $k \ge m$.

A k-completion $(A, B)_k$ of a partial permutation (A, B) is the set of all k-extensions of (A, B).

For example,

- $((2,4),(1,2))_4 = \{3142,4132\},\$
- $((2), (1))_4 = \{2134, 2143, 3124, 3142, 4123, 4132\},\$
- $(A, B)_k = \emptyset$ for $k < \max(A \cup B)$,
- Skip inside parentheses where context is non-ambiguous, e.g. (24, 12)3, (2, 1)4.

Outline	Definitions	Results	Conjectures
O	●OOO	0000	000
Partial permutations			

$$A = (a_1, ..., a_m), \quad B = (b_1, ..., b_m).$$

A *k*-extension of a partial permutation (*A*, *B*) of size *j* is a permutation $\sigma \in S_k$ such that

$$\sigma(a_i) = b_i$$
 for each $j = 1, \ldots, m$.

This is defined for $k \ge m$.

A k-completion $(A, B)_k$ of a partial permutation (A, B) is the set of all k-extensions of (A, B).

For example,

- $((2,4),(1,2))_4 = \{3142,4132\},\$
- $((2), (1))_4 = \{2134, 2143, 3124, 3142, 4123, 4132\},\$
- $(A, B)_k = \emptyset$ for $k < \max(A \cup B)$,

• Skip inside parentheses where context is non-ambiguous, e.g. (24, 12)₃, (2, 1)₄.

Outline	Definitions	Results	Conjectures
O	●OOO	0000	000
Partial permutations			

$$A = (a_1, ..., a_m), \quad B = (b_1, ..., b_m).$$

A *k*-extension of a partial permutation (*A*, *B*) of size *j* is a permutation $\sigma \in S_k$ such that

$$\sigma(a_i) = b_i$$
 for each $j = 1, \ldots, m$.

This is defined for $k \ge m$.

A k-completion $(A, B)_k$ of a partial permutation (A, B) is the set of all k-extensions of (A, B).

For example,

- $((2,4),(1,2))_4 = \{3142,4132\},\$
- $((2), (1))_4 = \{2134, 2143, 3124, 3142, 4123, 4132\},\$
- $(A, B)_k = \emptyset$ for $k < \max(A \cup B)$,
- Skip inside parentheses where context is non-ambiguous, e.g. (24, 12)₃, (2, 1)₄.

Outline	Definitions	Results	Conjectures
O	O●OO	0000	
Pattern avoidance			

- A permutation π contains an occurrence (or instance) of pattern σ , there is a subsequence of π order-isomorphic to σ .
- π avoids σ if π does not contain an occurrence of σ .
- π avoids a set of patterns *S* if π avoids every pattern in $\sigma \in S$.
- Denote the set of permutations of size *n* avoiding a pattern *σ* (resp. a set of patterns *S*) by Av_n(*σ*) (resp. by Av_n(*S*)).
- Call sets of patterns *S* and *T* Wilf-equivalent if $|Av_n(S)| = |Av_n(T)|$ for all $n \ge 0$, and denote this by $S \sim T$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline O	Definitions 00●0	Result	ts O	Conjectures

Wilf-equivalence for partial permutations

- Call partial permutations (A, B) and (C, D) k-Wilf-equivalent if $(A, B)_k \sim (C, D)_k$.
- Call partial permutations (A, B) and (C, D) Wilf-equivalent if $(A, B)_k \sim (C, D)_k$ for all $k \ge \max(A \cup B \cup C \cup D)$. Notation: $(A, B) \sim (C, D)$.
- For example, the following partial permutations are 3-Wilf-equivalent:

 $\begin{array}{ll} (13,13)_3 = (12,12)_3 \sim (13,12)_3 \sim (23,12)_3, & \text{i.e.} & 123 \sim 132 \sim 312, \\ (1,1)_3 \sim (2,1)_3 \sim (3,1)_3, & \text{i.e.} & (123,132) \sim (213,312) \sim (231,321). \end{array}$

Outline	e Definitions		Results	Conjectures		
O	○○●○		0000	000		

Wilf-equivalence for partial permutations

- Call partial permutations (A, B) and (C, D) k-Wilf-equivalent if $(A, B)_k \sim (C, D)_k$.
- Call partial permutations (A, B) and (C, D) Wilf-equivalent if (A, B)_k ~ (C, D)_k for all k ≥ max(A ∪ B ∪ C ∪ D). Notation: (A, B) ~ (C, D).
- For example, the following partial permutations are 3-Wilf-equivalent:

 $\begin{aligned} (13,13)_3 &= (12,12)_3 \sim (13,12)_3 \sim (23,12)_3, & \text{i.e.} \quad 123 \sim 132 \sim 312, \\ (1,1)_3 \sim (2,1)_3 \sim (3,1)_3, & \text{i.e.} \quad (123,132) \sim (213,312) \sim (231,321). \end{aligned}$

Outline	Definitions	Results	Conjectures
O	○O●O	0000	
Wilf-equivalence for	partial permutations		

- Call partial permutations (A, B) and (C, D) k-Wilf-equivalent if $(A, B)_k \sim (C, D)_k$.
- Call partial permutations (A, B) and (C, D) Wilf-equivalent if (A, B)_k ~ (C, D)_k for all k ≥ max(A ∪ B ∪ C ∪ D). Notation: (A, B) ~ (C, D).
- For example, the following partial permutations are 3-Wilf-equivalent:

$$\begin{aligned} &(13,13)_3 = (12,12)_3 \sim (13,12)_3 \sim (23,12)_3, & \text{i.e.} \quad 123 \sim 132 \sim 312, \\ &(1,1)_3 \sim (2,1)_3 \sim (3,1)_3, & \text{i.e.} \quad (123,132) \sim (213,312) \sim (231,321). \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline	Definitions	Results	Conjectures
O	000●	0000	
(NE)-shape-Wilf equ	ivalence		

Outline	Definitions	Results	Conjectures
O	000●	0000	
(NE)-shape-Wilf equ	ivalence		

Outline	Definitions	Results	Conjectures
O	○○○●	0000	

Outline	Definitions	Results	Conjectures
O	○○○●	0000	

Outline	Definitions	Results	Conjectures
O	000●	0000	

Outline	Definitions	Results	Conjectures
O	○○○●	0000	

Outline	Definitions	Results	Conjectures
O	○○○●	0000	

Outline	Definitions	Results	Conjectures
0	0000	0000	000

avoids 231

Outline	Definitions	Results	Conjectures
0	0000	0000	000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

avoids 231

Outline	Definitions	Results	Conjectures
	0000		

avoids 231

contains 123

Outline	Definitions	Results	Conjectures
	0000		

avoids 231

- contains 123
- Patterns σ and τ are NE-shape-Wilf-equivalent, denoted σ ~_s τ, if for any fixed NE-shape Λ, equal number of traversals (or transversals) of Λ avoid σ and τ.

Outline	Definitions	Results	Conjectures
	0000	0000	000

avoids 231

- contains 123
- Patterns σ and τ are NE-shape-Wilf-equivalent, denoted σ ~_s τ, if for any fixed NE-shape Λ, equal number of traversals (or transversals) of Λ avoid σ and τ.
- SW-shape-Wilf-equivalence can be defined similarly, denoted $\sigma \sim_{\mathbf{S}} \tau$

Outline	Definitions	Results	Conjectures
O	0000	●000	000
Previous results for N	IE-shape-Wilf equivaler	nce	

• Backelin, West, Xin, 2007:

• $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''

• Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''

• $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This follows from iterating $J_{n+1}=J_n\oplus 1=0$, \oplus $J_n\sim_k J_n\oplus 1$ for any $n\geq 0$

• Bloom, Elizalde, 2014:

• $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$

• Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	●000	
Previous results for N	IE-shape-Wilf equivale	nce	

• Backelin, West, Xin, 2007:

- $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
- Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''
- $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_s J_n \oplus 1$ for any $n \ge 0$

- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	●000	
Previous results for N	IE-shape-Wilf equivaler	nce	

- Backelin, West, Xin, 2007:
 - $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
 - Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''

• $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_s J_n \oplus 1$ for any $n \ge 0$

- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	●000	
Previous results for N	IE-shape-Wilf equivale	nce	

- Backelin, West, Xin, 2007:
 - $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
 - Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''
 - $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_s J_n \oplus 1$ for any $n \ge 0$

- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	●000	
Previous results for N	E-shape-Wilf equivaler	nce	

- Backelin, West, Xin, 2007:
 - $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
 - Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''
 - $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

- This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_s J_n \oplus 1$ for any $n \ge 0$
- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	●000	000
Previous results for	NE-shape-Wil	f equivalence	

$$\sigma \oplus \tau = \frac{\tau}{\sigma} \qquad \qquad \sigma \ominus \tau = \frac{\sigma}{\tau}$$

- Backelin, West, Xin, 2007:
 - $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
 - Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''
 - $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

- This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_{\mathbf{S}} J_n \oplus 1$ for any $n \ge 0$
- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	●000	000
Previous results for	NE-shape-Wil	f equivalence	

$$\sigma \oplus \tau = \frac{\tau}{\sigma} \qquad \qquad \sigma \ominus \tau = \frac{\sigma}{\tau}$$

- Backelin, West, Xin, 2007:
 - $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
 - Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''
 - $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

- This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_{s} J_n \oplus 1$ for any $n \ge 0$
- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, (3, 1)₃ ∽_s (2, 1)₃ ∽_s (1, 1)₃ ∽_s (1, 3)₃ ∽_s (3, 2)₃ ∽_s (2, 3)₃

Outline	Definitions	Results	Conjectures
O	0000	●000	000
Previous results for	NE-shape-Wil	f equivalence	

$$\sigma \oplus \tau = \frac{\tau}{\sigma} \qquad \qquad \sigma \ominus \tau = \frac{\sigma}{\tau}$$

- Backelin, West, Xin, 2007:
 - $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
 - Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''
 - $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

- This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_{s} J_n \oplus 1$ for any $n \ge 0$
- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	●000	000
Previous results for	NE-shape-Wil	f equivalence	

$$\sigma \oplus \tau = \frac{\tau}{\sigma} \qquad \qquad \sigma \ominus \tau = \frac{\sigma}{\tau}$$

- Backelin, West, Xin, 2007:
 - $S' \sim_s S'' \implies S' \oplus S \sim_s S'' \oplus S$, for any sets of patterns S, S', S''
 - Equivalently, $S' \sim_s S'' \implies S \oplus S' \sim_s S \oplus S''$, for any sets of patterns S, S', S''
 - $I_n \sim_s J_n$ and $I_n \sim_s J_n$, for the identity I_n and anti-identity J_n patterns of any size $n \ge 0$

- This follows from iterating $J_{n+1} = J_n \ominus 1 = 1 \ominus J_n \sim_{\mathbf{S}} J_n \oplus 1$ for any $n \ge 0$
- Bloom, Elizalde, 2014:
 - $(1,3)_3 \sim_s (2,3)_3 \sim_s (3,3)_3 \sim_s (3,1)_3 \sim_s (2,1)_3 \sim_s (1,2)_3$
 - Equivalently, $(3, 1)_3 \sim_s (2, 1)_3 \sim_s (1, 1)_3 \sim_s (1, 3)_3 \sim_s (3, 2)_3 \sim_s (2, 3)_3$

Outline	Definitions	Results	Conjectures
O	0000	0●00	
Reculte I			

 $(t,1)_k \sim_s (1,1)_k$ for all $1 \le t \le k$, so all (t,1), $t \ge 1$, are SW-shape-Wilf-equivalent.

Outline	Definitions	Results	Conjectures
O	0000	O●OO	
Results I			

 $(t,1)_k \sim_s (1,1)_k$ for all $1 \le t \le k$, so all (t,1), $t \ge 1$, are SW-shape-Wilf-equivalent.

Proof. Grow the shape by adding the new bottom row and the column of the new bottom 1.

Outline	Definitions	Results	Conjectures
O	0000	O●OO	
Results I			

 $(t,1)_k \sim_s (1,1)_k$ for all $1 \le t \le k$, so all (t,1), $t \ge 1$, are SW-shape-Wilf-equivalent.

Proof. Grow the shape by adding the new bottom row and the column of the new bottom 1. $t \simeq 1$ k = t

Outline	Definitions	Results	Conjectures
O	0000	o●oo	
Results I			

 $(t,1)_k \sim_s (1,1)_k$ for all $1 \le t \le k$, so all (t,1), $t \ge 1$, are SW-shape-Wilf-equivalent.

Proof. Grow the shape by adding the new bottom row and the column of the new bottom 1. $t \simeq 1$ k = tThe number of possible insertion cells in a bottom row of length ℓ is min $(\ell, k - 1)$.

Outline	Definitions	Results	Conjectures
O	0000	O●OO	
Results I			

 $(t,1)_k \sim_s (1,1)_k$ for all $1 \le t \le k$, so all (t,1), $t \ge 1$, are SW-shape-Wilf-equivalent.

Corollary $(1t, 12)_k \sim_s (12, 12)_k$ for all $2 \le t \le k$, so all (1t, 12), $t \ge 2$, are SW-shape-Wilf-equivalent.

Outline	Definitions	Results	Conjectures
O	0000	O●OO	
Results I			

 $(t,1)_k \sim_s (1,1)_k$ for all $1 \le t \le k$, so all (t,1), $t \ge 1$, are SW-shape-Wilf-equivalent.

Proof. Grow the shape by adding the new bottom row and the column of the new bottom 1. $\underbrace{1-1}_{t-1}$ The number of possible insertion cells in a bottom row of length ℓ is min $(\ell, k - 1)$.

This result was originally stated in terms of partially ordered patterns (POPs).

Corollary

 $(1t, 12)_k \sim_s (12, 12)_k$ for all $2 \le t \le k$, so all $(1t, 12), t \ge 2$, are SW-shape-Wilf-equivalent.

Outline	Definitions	Results	Conjectures
O	0000	00●0	
Results II			

Theorem

 $((t, t+1), (1, 2))_k \sim (12, 12)_k$ for all $1 \le t \le k-1$, so all $((t, t+1), (1, 2)), t \ge 1$, are Wilf-equivalent.

Moreover, for $k \ge 3$, $|Av_n(((t, t+1), (1, 2))_k)| = \begin{cases} n!, & \text{if } n < k-3, \\ (k-3)!r_{k-3}(n), & \text{if } n \ge k-3, \end{cases}$

where $r_{k-3}(n)$ is the n-th (k-3)-Schröder number, the number of Schröder paths from (0,0) to (2n,0) on or above the x-axis with steps U = (1,1), D = (1,-1), and steps H = (2,0) of k-3 colors.

Proof Sketch.

For $\sigma \in Av_n(((t, t + 1), (1, 2))_k)$, consider the top k - 2 values of σ (their order is irrelevant) and the blocks into which they split σ . Count the number of the points in the region that avoids 12. Use this to find a functional equation for the generating function with 1 auxiliary variable, then use the kernel method.

Outline	Definitions	Results	Conjectures
O	0000	000●	000
Proof Sketch (cont'd))		

$$Av(R_{i,0}) | Av(R_{i-1,0}) | \cdots | Av(R_{1,0}) | w | Av(R_{0,1}) | \cdots | Av(R_{0,1}) | Av(R_{0,j-1}) | Av(R_{0,$$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$:

 $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x)$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline	Definitions	Results	Conjectures
O	0000	000●	
Proof Sketch (cont'd)			

$$Av(R_{i,0}) | Av(R_{i-1,0}) | \dots | Av(R_{1,0}) | Av(R_{0,1}) | \dots | Av(R_{0,j-1}) | Av(R_{0,j-1}) | Av(R_{0,j-1}) | Av(R_{0,j})$$

$$F(x,y) = 1 + (k-2)x \frac{yF(x,y) - F(x,1)}{y-1} + xyF(x,y)$$

$$(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Outline	Definitions	Results	Conjectures
O	0000	○○○●	
Proof Sketch (cont'd)		

$$Av(R_{i,0}) | Av(R_{i-1,0}) | \dots | Av(R_{1,0}) | Av(R_{1,0}) | Av(R_{0,1}) | \dots | Av(R_{0,j-1}) | Av(R_{0,j-1}$$

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Outline	Definitions	Results	Conjectures
O	0000	000●	
Proof Sketch (cont'd)		

$$Av(R_{i,0}) | Av(R_{i-1,0}) | \dots | Av(R_{1,0}) | Av(R_{1,0}) | Av(R_{0,1}) | \dots | Av(R_{0,j-1}) | Av(R_{0,j-1}$$

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Outline O	Definitions	Results ○○○●	Conjectures
Proof Sketch (cont'd)			

$$A_{\mathsf{v}}(R_{i,0}) \land \mathsf{v}(R_{i-1,0}) \land \mathsf{v} \land \mathsf{v}(R_{1,0}) \land \mathsf{v}(R_{0,1}) \land \mathsf{v}(R_{0,1}) \land \mathsf{v}(R_{0,j-1}) \land \mathsf{v}(R_{0,j})$$

$$F(x,y) = 1 + (k-2)x\frac{yF(x,y) - F(x,1)}{y-1} + xyF(x,y)$$

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへで

Outline	Definitions	Results	Conjectures
O	0000	000●	
Proof Sketch (cont'd)		

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

Outline	Definitions	Results	Conjectures
O	0000	000●	
Proof Sketch (co	nťd)		

$$Av(R_{i,0}) | Av(R_{i-1,0}) | \dots | Av(R_{1,0}) | \dots | Av(R_{0,1}) | \dots | Av(R_{0,j-1}) | Av(R_{0,j})$$

$$vE(x, y) = E(x, 1)$$

$$F(x, y) = 1 + (k - 2)x \frac{y F(x, y) - F(x, 1)}{y - 1} + xyF(x, y)$$

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Outline	Definitions	Results	Conjectures
O	0000	000●	
Proof Sketch (cont'd)		

$$Av(R_{i,0}) | Av(R_{i-1,0}) | \dots | Av(R_{1,0}) | \dots | Av(R_{1,0}) | \dots | Av(R_{0,1}) | \dots | Av(R_{0,1}) | \dots | Av(R_{0,1})$$

$$F(x, y) = 1 + (k-2)x \frac{yF(x, y) - F(x, 1)}{y - 1} + xyF(x, y)$$

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Outline	Definitions	Results	Conjectures
O	0000	○○○●	
Proof Sketch (cont'd)		

$$Av(R_{i,0}) | Av(R_{i-1,0}) | \dots | Av(R_{1,0}) | Av(R_{1,0}) | Av(R_{0,1}) | \dots | Av(R_{0,j-1}) | Av(R_{0,j-1}$$

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Outline	Definitions	Results	Conjectures
O	0000	○○○●	
Proof Sketch (cont'd)		

$$A_{v(R_{j,0})} \| A_{v(R_{j-1,0})} \| \dots \| A_{v(R_{1,0})} \| A_{v(R_{1,0})} \| A_{v(R_{0,1})} \| \dots \| A_{v(R_{0,j-1})} \| A_{v(R_{0,j$$

 $(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k-3$: $(k-3)!x^{k-3}+(k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへで

Outline	Definitions	Results	Conjectures
O	0000	○○○●	000
Proof Sketch (cont'o])		

$$Av(R_{i,0}) \quad Av(R_{i-1,0}) \quad \cdots \quad Av(R_{1,0}) \quad Av(R_{0,1}) \quad \cdots \quad Av(R_{0,j-1}) \quad Av(R_{0,j-1}) \quad Av(R_{0,j})$$

$$F(x, y) = 1 + (k - 2)x \frac{yF(x, y) - F(x, 1)}{y - 1} + xyF(x, y)$$

$$(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k-3$: $(k-3)!x^{k-3}+(k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

Outline	Definitions	Results	Conjectures
O	0000	○○○●	000
Proof Sketch (cont'o])		

$$\operatorname{Av}(R_{i,0}) \left| \operatorname{Av}(R_{i-1,0}) \right| \cdots \left| \operatorname{Av}(R_{1,0}) \right| \left| \operatorname{Av}(R_{0,1}) \right| \left| \operatorname{Av}(R_{0,j-1}) \right| \operatorname{Av}(R_{0,j-1}) \right| \operatorname{Av}(R_{0,j-1}) \left| \operatorname{Av}(R_{0,j-1}) \right| \left| \operatorname{Av}(R_{0,j-$$

$$F(x, y) = 1 + (k - 2)x \frac{yF(x, y) - F(x, 1)}{y - 1} + xyF(x, y)$$

$$(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k - 3$: $(k-3)!x^{k-3} + (k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x)$.

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ●

Outline	Definitions	Results	Conjectures
O	0000	○○○●	000
Proof Sketch (cont'o])		

$$\operatorname{Av}(R_{i,0}) \left| \operatorname{Av}(R_{i-1,0}) \right| \cdots \left| \operatorname{Av}(R_{1,0}) \right| \left| \operatorname{Av}(R_{0,1}) \right| \left| \operatorname{Av}(R_{0,1}) \right| \left| \operatorname{Av}(R_{0,j-1}) \right| \operatorname{Av}(R_{0,j})$$

$$F(x, y) = 1 + (k - 2)x \frac{yF(x, y) - F(x, 1)}{y - 1} + xyF(x, y)$$

$$(y - 1 - (k - 3)xy - xy^2)F(x, y) = y - (1 + (k - 2)xF(x, 1))$$

Kernel = 0: $y = 1 + (k - 3)xy + xy^2$, i.e. $y = R_{k-3}(x)$, the (k - 3)-Schröder ogf.

OGF over $j \ge k-3$: $(k-3)!x^{k-3}+(k-2)!x^{k-2}F(x,1) = (k-3)!x^{k-3}(1+(k-2)xF(x,1)) = (k-3)!x^{k-3}R_{k-3}(x).$

<ロ> <0</p>

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Coniectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): (k,2)_k ∽_s (k,1)_k, and thus (1k, 13)_k ∽_s (1k, 12)_k for all k ≥ 3.
 Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all $\sigma \in S_3$. Equivalently, (14253, 15243) \sim (14352, 15342) \sim (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- (134, 123) \sim (234, 213). Equivalently, (123, 134) \sim (123, 324).
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Conjectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): $(k, 2)_k \sim_s (k, 1)_k$, and thus $(1k, 13)_k \sim_s (1k, 12)_k$ for all $k \ge 3$.
 - Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all $\sigma \in S_3$. Equivalently, (14253, 15243) \sim (14352, 15342) \sim (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- $(134, 123) \sim (234, 213)$. Equivalently, $(123, 134) \sim (123, 324)$.
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Conjectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): $(k, 2)_k \sim_s (k, 1)_k$, and thus $(1k, 13)_k \sim_s (1k, 12)_k$ for all $k \ge 3$.
 - Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all $\sigma \in S_3$. Equivalently, (14253, 15243) \sim (14352, 15342) \sim (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- $(134, 123) \sim (234, 213)$. Equivalently, $(123, 134) \sim (123, 324)$.
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Conjectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): $(k, 2)_k \sim_s (k, 1)_k$, and thus $(1k, 13)_k \sim_s (1k, 12)_k$ for all $k \ge 3$.
 - Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all $\sigma \in S_3$. Equivalently, (14253, 15243) \sim (14352, 15342) \sim (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- $(134, 123) \sim (234, 213)$. Equivalently, $(123, 134) \sim (123, 324)$.
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Conjectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): $(k, 2)_k \sim_s (k, 1)_k$, and thus $(1k, 13)_k \sim_s (1k, 12)_k$ for all $k \ge 3$.
 - Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all σ ∈ S₃. Equivalently, (14253, 15243) ~ (14352, 15342) ~ (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- (134, 123) \sim (234, 213). Equivalently, (123, 134) \sim (123, 324).
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Conjectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): $(k, 2)_k \sim_s (k, 1)_k$, and thus $(1k, 13)_k \sim_s (1k, 12)_k$ for all $k \ge 3$.
 - Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all σ ∈ S₃. Equivalently, (14253, 15243) ~ (14352, 15342) ~ (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- $(134, 123) \sim (234, 213)$. Equivalently, $(123, 134) \sim (123, 324)$.
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Conjectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): $(k, 2)_k \sim_s (k, 1)_k$, and thus $(1k, 13)_k \sim_s (1k, 12)_k$ for all $k \ge 3$.
 - Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all σ ∈ S₃. Equivalently, (14253, 15243) ~ (14352, 15342) ~ (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- (134, 123) \sim (234, 213). Equivalently, (123, 134) \sim (123, 324).
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

Outline	Definitions	Results	Conjectures
O	0000	0000	●OO
Conjectures			

- (*ij*, 12) are Wilf-equivalent for all (*i*, *j*) such that i = 1 or $j = i \pm 1$ or $j = i \pm 2$.
- (BHKZ'24): $(k, 2)_k \sim_s (k, 1)_k$, and thus $(1k, 13)_k \sim_s (1k, 12)_k$ for all $k \ge 3$.
 - Proved by Wang and Yan (2025).
- For each $i \ge 1$, ((j + 1, j + 2, ..., j + i), (1, 2, ..., i)) are Wilf-equivalent for all $j \ge 0$.
- (135, σ) are 5-Wilf-equivalent for all σ ∈ S₃. Equivalently, (14253, 15243) ~ (14352, 15342) ~ (24153, 25143).
- (24, 12)₄ ∽_s (24, 21)₄. Equivalently, (3142, 4132) ∽_s (3241, 4231).
- (134, 123) \sim (234, 213). Equivalently, (123, 134) \sim (123, 324).
- For $1 \le i, j \le k$, $\lim_{n \to \infty} \sqrt[n]{|Av_n((i,j)_k)|} = \max\{|k+1-2i|, |k+1-2j|\}.$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Outline	Definitions	Results	Conjectures
O	0000	0000	O●O
Examples			

We know that $|Av_n((t, 1)_k)| = (k - 1)!(k - 1)^{n-k+1}$ for $1 \le t \le k$.

Here are more examples for (i, j) with $2 \le i, j \le k - 1$.

• $|Av_n((2,2)_4)| = A128445(n) = 4((n-2)^2 + 1)$ for $n \ge 5$.

• $|Av_n((2,2)_5)| = \frac{9}{8}A217527(n) = \frac{9}{4}A356888(n-1) = 9((n-2)^2 + 2)2^{n-5}$ for $n \ge 6$.

• $|Av_n((3,2)_5)| = 4!A221882(n) = 4!((n-2)2^{n-4} - (n-3))$ for $n \ge 4$.

Outline	Definitions	Results	Conjectures
O	0000	0000	O●O
Examples			

We know that $|Av_n((t, 1)_k)| = (k - 1)!(k - 1)^{n-k+1}$ for $1 \le t \le k$.

Here are more examples for (i, j) with $2 \le i, j \le k - 1$.

•
$$|Av_n((2,2)_4)| = A128445(n) = 4((n-2)^2 + 1)$$
 for $n \ge 5$.

• $|Av_n((2,2)_5)| = \frac{9}{8}A217527(n) = \frac{9}{4}A356888(n-1) = 9((n-2)^2+2)2^{n-5}$ for $n \ge 6$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $|Av_n((3,2)_5)| = 4!A221882(n) = 4!((n-2)2^{n-4} - (n-3))$ for $n \ge 4$.

Outline	Definitions	Results	Conjectures
O	0000	0000	O●O
Examples			

We know that $|Av_n((t, 1)_k)| = (k - 1)!(k - 1)^{n-k+1}$ for $1 \le t \le k$.

Here are more examples for (i, j) with $2 \le i, j \le k - 1$.

•
$$|Av_n((2,2)_4)| = A128445(n) = 4((n-2)^2 + 1)$$
 for $n \ge 5$.

•
$$|Av_n((2,2)_5)| = \frac{9}{8}A217527(n) = \frac{9}{4}A356888(n-1) = 9((n-2)^2+2)2^{n-5}$$
 for $n \ge 6$.

• $|Av_n((3,2)_5)| = 4!A221882(n) = 4!((n-2)2^{n-4} - (n-3))$ for $n \ge 4$.

Outline	Definitions	Results	Conjectures
O	0000	0000	O●O
Examples			

We know that $|Av_n((t,1)_k)| = (k-1)!(k-1)^{n-k+1}$ for $1 \le t \le k$.

Here are more examples for (i, j) with $2 \le i, j \le k - 1$.

•
$$|Av_n((2,2)_4)| = A128445(n) = 4((n-2)^2 + 1)$$
 for $n \ge 5$.

•
$$|Av_n((2,2)_5)| = \frac{9}{8}A217527(n) = \frac{9}{4}A356888(n-1) = 9((n-2)^2+2)2^{n-5}$$
 for $n \ge 6$.

•
$$|Av_n((3,2)_5)| = 4!A221882(n) = 4!((n-2)2^{n-4} - (n-3))$$
 for $n \ge 4$.

Outline O	Definitions 0000	Results 0000	Conjectures OO●
Refere	nces		
	M. H. Albert, C. Bean, A. Claesson, É. Nadeau, J. Pantone, I	H. Ulfarsson, Combinatorial Exploration: An a	algorithmic framework for
	enumeration, preprint, arXiv:2202.07715.		
	A. Burstein, T. Han, S. Kitaev, P. Zhang, On (shape-)Wilf-equ Combin. 32(1) (2025), #P1.7, 10 pp.	ivalence of certain sets of (partially ordered)	patterns, Electron. J.
	J. Backelin, J. West, G. Xin, Wilf-equivalence for singleton cla	asses, Adv. in Appl. Math. 38 (2007), 133–14	8.
	C. Bean, J. S. Eliasson, T. K. Magnusson, É. Nadeau, J. Pan patterns, https://github.com/PermutaTriangle/Tilings, June 20	tone, H. Ulfarsson, Tilings: Combinatorial Ex)21. DOI: https://doi.org/10.5281/zenodo.581	ploration for permutation 0636.
	C. Bean, É. Nadeau, J. Pantone, H. Ulfarsson, Permutations encoding, preprint, arXiv:2312.07716.	avoiding bipartite partially ordered patterns h	nave a regular insertion
	J. Bloom, S. Elizalde, Pattern avoidance in matchings and pa	artitions, <i>Electron. J. Combin.</i> 20(2) (2013), #	P5, 38 pp.
	J. N. Chen, Z. Lin, A bijection for length-5 patterns in permuta	ations, J. Combin. Theory Ser. A 202 (2024),	Paper No. 105815, 34 pp.
	Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns #P3.26, 31 pp.	of lengths 4 and 5 in permutations, <i>Electron</i> .	J. Combin. 26(3) (2019),
	OEIS, The Online Encyclopedia of Integer Sequences, http://	/oeis.org.	
	L. Wang, S. H. F. Yan, Proof of a conjecture on the shape-Wi	If-equivalence for partially ordered patterns, a	arXiv:2503.22098.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶