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Two ways to write permutations

Two ways to write a permutation π ∈ Sn:
in one-line notation, e.g. π = 31 7 6 5 4 2,
in cycle notation, e.g. π = (1, 3, 7, 2)(4, 6)(5).

Define the following subsets of Sn:
So

n = permutations all of whose cycles have odd length;
Se

n = permutations all of whose cycles have even length,
except possibly for one cycle of length one (a fixed point).

Example
So
3 = {(1, 2, 3), (1, 3, 2), (1)(2)(3)},
Se
3 = {(1, 2)(3), (1, 3)(2), (2, 3)(1)}.
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Odd cycles vs. even cycles

Proposition
For every n,

|So
n | = |Se

n |

=

{
(n − 1)!!2 = (n − 1)2(n − 3)2 . . . 12 if n is even,
n (n − 2)!!2 = n(n − 2)2(n − 4)2 . . . 22 if n is odd.

This can be easily proved using exponential generating functions.

Alternatively, for even n, Bóna gave a bijective proof of |So
n | = |Se

n |:

1 Write each cycle of π ∈ So
n starting with its largest element, and order

the cycles by increasing first element, e.g. π = (4)(5, 1, 3)(7, 2, 6)(8).
2 Move the last element of the 1st cycle to the end of the 2nd cycle,

the last element of the 3rd cycle to the end of the 4th cycle, etc., e.g.
(4)(5, 1, 3)(7, 2, 6)(8) 7→ (5, 1, 3, 4)(7, 2)(8, 6) ∈ Se

n .
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A surprising refinement

Definition
For π = π1π2 . . . πn ∈ Sn,

its descent set is Des(π) = {i : πi > πi+1},
its ascent set is Asc(π) = {i : πi < πi+1}.

Theorem (Adin, Hegedűs, Roichman ’25)
For any n and any subset J ⊆ [n − 1],

|{π ∈ So
n : Asc(π) = J}| = |{π ∈ Se

n : Des(π) = J}|.
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A surprising refinement

|{π ∈ So
n : Asc(π) = J}| = |{π′ ∈ Se

n : Des(π′) = J}|

Example (n = 4)
π ∈ So

4 Asc(π) = Des(π′) π′ ∈ Se
4

(1, 2, 4)(3) = 2431 {1} (1, 4, 3, 2) = 4123
(1, 4, 2)(3) = 4132 {2} (1, 2, 4, 3) = 2413
(1, 3, 4)(2) = 3241 {2} (1, 3)(2, 4) = 3412
(1, 4, 3)(2) = 4213 {3} (1, 2, 3, 4) = 2341
(2, 3, 4)(1) = 1342 {1, 2} (1, 4, 2, 3) = 4312
(2, 4, 3)(1) = 1423 {1, 3} (1, 3, 4, 2) = 3142
(1, 2, 3)(4) = 2314 {1, 3} (1, 2)(3, 4) = 2143
(1, 3, 2)(4) = 3124 {2, 3} (1, 3, 2, 4) = 3421
(1)(2)(3)(4) = 1234 {1, 2, 3} (1, 4)(2, 3) = 4321
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Bijective proof?

Adin, Hegedűs and Roichman’s proof is algebraic, and it relies on
generating functions for higher Lie characters of Sn.

Our goal is to provide a bijective proof.

Unfortunately, Bóna’s bijection So
n → Se

n does not behave well with
respect to Asc and Des.

For any n and any subset S ⊆ [n− 1], we will construct an explicit bijection

{π ∈ So
n : Asc(π) ⊆ S}! {π ∈ Se

n : Des(π) ⊆ S}.
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Structure of the bijection

{π ∈ So
n : Asc(π) ⊆ S} ! {π ∈ Se

n : Des(π) ⊆ S}

↓ ↓

Multisets of odd, distinct necklaces Multisets of even necklaces

≡ ≡

Words whose Lyndon factors
are odd and distinct ←→ Words whose Lyndon factors

are even
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Multisets of necklaces
Let A = {a, b, c, . . . }, W = finite words over A.

A word u ∈ W is primitive if it is not of the form u = r j for j ≥ 2.

Example: ababa is primitive, but abab = (ab)2 is not.

A necklace is an equivalence class of primitive words under cyclic rotation.

Example: (a, b, a, b, a) = (b, a, b, a, a) = (a, b, a, a, b) = . . .

Mn = multisets of necklaces of total length n.
The weight of M ∈Mn is wt(M) = a#a′sb#b′sc#c′s . . . .

Example: M = (a, b, a, b, a)(a, c)(a, c)(b) ∈M10, wt(M) = a5b3c2.

For a set S = {s1, s2, . . . , sk} ⊆ [n − 1] with s1 < · · · < sk , let
α = (s1, s2 − s1, . . . , n − sk) and wt(S) = aα1bα2cα3 . . . .

Example: If S = {2, 3} ⊆ [5], then α = (2, 1, 3) and wt(S) = a2bc3.

Sergi Elizalde (Dartmouth) Descents of perm. with odd/even cycles Permutation Patterns 2025 8 / 20



Multisets of necklaces
Let A = {a, b, c, . . . }, W = finite words over A.
A word u ∈ W is primitive if it is not of the form u = r j for j ≥ 2.

Example: ababa is primitive, but abab = (ab)2 is not.

A necklace is an equivalence class of primitive words under cyclic rotation.

Example: (a, b, a, b, a) = (b, a, b, a, a) = (a, b, a, a, b) = . . .

Mn = multisets of necklaces of total length n.
The weight of M ∈Mn is wt(M) = a#a′sb#b′sc#c′s . . . .

Example: M = (a, b, a, b, a)(a, c)(a, c)(b) ∈M10, wt(M) = a5b3c2.

For a set S = {s1, s2, . . . , sk} ⊆ [n − 1] with s1 < · · · < sk , let
α = (s1, s2 − s1, . . . , n − sk) and wt(S) = aα1bα2cα3 . . . .

Example: If S = {2, 3} ⊆ [5], then α = (2, 1, 3) and wt(S) = a2bc3.

Sergi Elizalde (Dartmouth) Descents of perm. with odd/even cycles Permutation Patterns 2025 8 / 20



Multisets of necklaces
Let A = {a, b, c, . . . }, W = finite words over A.
A word u ∈ W is primitive if it is not of the form u = r j for j ≥ 2.

Example: ababa is primitive, but abab = (ab)2 is not.

A necklace is an equivalence class of primitive words under cyclic rotation.

Example: (a, b, a, b, a) = (b, a, b, a, a) = (a, b, a, a, b) = . . .

Mn = multisets of necklaces of total length n.
The weight of M ∈Mn is wt(M) = a#a′sb#b′sc#c′s . . . .

Example: M = (a, b, a, b, a)(a, c)(a, c)(b) ∈M10, wt(M) = a5b3c2.

For a set S = {s1, s2, . . . , sk} ⊆ [n − 1] with s1 < · · · < sk , let
α = (s1, s2 − s1, . . . , n − sk) and wt(S) = aα1bα2cα3 . . . .

Example: If S = {2, 3} ⊆ [5], then α = (2, 1, 3) and wt(S) = a2bc3.

Sergi Elizalde (Dartmouth) Descents of perm. with odd/even cycles Permutation Patterns 2025 8 / 20



Multisets of necklaces
Let A = {a, b, c, . . . }, W = finite words over A.
A word u ∈ W is primitive if it is not of the form u = r j for j ≥ 2.

Example: ababa is primitive, but abab = (ab)2 is not.

A necklace is an equivalence class of primitive words under cyclic rotation.

Example: (a, b, a, b, a) = (b, a, b, a, a) = (a, b, a, a, b) = . . .

Mn = multisets of necklaces of total length n.

The weight of M ∈Mn is wt(M) = a#a′sb#b′sc#c′s . . . .

Example: M = (a, b, a, b, a)(a, c)(a, c)(b) ∈M10, wt(M) = a5b3c2.

For a set S = {s1, s2, . . . , sk} ⊆ [n − 1] with s1 < · · · < sk , let
α = (s1, s2 − s1, . . . , n − sk) and wt(S) = aα1bα2cα3 . . . .

Example: If S = {2, 3} ⊆ [5], then α = (2, 1, 3) and wt(S) = a2bc3.

Sergi Elizalde (Dartmouth) Descents of perm. with odd/even cycles Permutation Patterns 2025 8 / 20



Multisets of necklaces
Let A = {a, b, c, . . . }, W = finite words over A.
A word u ∈ W is primitive if it is not of the form u = r j for j ≥ 2.

Example: ababa is primitive, but abab = (ab)2 is not.

A necklace is an equivalence class of primitive words under cyclic rotation.

Example: (a, b, a, b, a) = (b, a, b, a, a) = (a, b, a, a, b) = . . .

Mn = multisets of necklaces of total length n.
The weight of M ∈Mn is wt(M) = a#a′sb#b′sc#c′s . . . .

Example: M = (a, b, a, b, a)(a, c)(a, c)(b) ∈M10, wt(M) = a5b3c2.

For a set S = {s1, s2, . . . , sk} ⊆ [n − 1] with s1 < · · · < sk , let
α = (s1, s2 − s1, . . . , n − sk) and wt(S) = aα1bα2cα3 . . . .

Example: If S = {2, 3} ⊆ [5], then α = (2, 1, 3) and wt(S) = a2bc3.

Sergi Elizalde (Dartmouth) Descents of perm. with odd/even cycles Permutation Patterns 2025 8 / 20



Multisets of necklaces
Let A = {a, b, c, . . . }, W = finite words over A.
A word u ∈ W is primitive if it is not of the form u = r j for j ≥ 2.

Example: ababa is primitive, but abab = (ab)2 is not.

A necklace is an equivalence class of primitive words under cyclic rotation.

Example: (a, b, a, b, a) = (b, a, b, a, a) = (a, b, a, a, b) = . . .

Mn = multisets of necklaces of total length n.
The weight of M ∈Mn is wt(M) = a#a′sb#b′sc#c′s . . . .

Example: M = (a, b, a, b, a)(a, c)(a, c)(b) ∈M10, wt(M) = a5b3c2.

For a set S = {s1, s2, . . . , sk} ⊆ [n − 1] with s1 < · · · < sk , let
α = (s1, s2 − s1, . . . , n − sk) and wt(S) = aα1bα2cα3 . . . .

Example: If S = {2, 3} ⊆ [5], then α = (2, 1, 3) and wt(S) = a2bc3.

Sergi Elizalde (Dartmouth) Descents of perm. with odd/even cycles Permutation Patterns 2025 8 / 20



Multisets of necklaces
Let A = {a, b, c, . . . }, W = finite words over A.
A word u ∈ W is primitive if it is not of the form u = r j for j ≥ 2.

Example: ababa is primitive, but abab = (ab)2 is not.

A necklace is an equivalence class of primitive words under cyclic rotation.

Example: (a, b, a, b, a) = (b, a, b, a, a) = (a, b, a, a, b) = . . .

Mn = multisets of necklaces of total length n.
The weight of M ∈Mn is wt(M) = a#a′sb#b′sc#c′s . . . .

Example: M = (a, b, a, b, a)(a, c)(a, c)(b) ∈M10, wt(M) = a5b3c2.

For a set S = {s1, s2, . . . , sk} ⊆ [n − 1] with s1 < · · · < sk , let
α = (s1, s2 − s1, . . . , n − sk) and wt(S) = aα1bα2cα3 . . . .

Example: If S = {2, 3} ⊆ [5], then α = (2, 1, 3) and wt(S) = a2bc3.
Sergi Elizalde (Dartmouth) Descents of perm. with odd/even cycles Permutation Patterns 2025 8 / 20



From permutations to multisets of necklaces: Des ⊆ S

In 1993, Gessel and Reutenauer described a bijection

ΦS : {π ∈ Sn : Des(π) ⊆ S} → {M ∈Mn : wt(M) = wt(S)}

that preserves the cycle structure:

Write π in cycle form, and replace entries 1, . . . , s1 with a, entries
s1 + 1, . . . , s2 with b, etc.

Example

Let n = 8 and S = {4, 7}, so wt(S) = a4b3c.
Take π = 4567·238·1 ∈ Sn, which has Des(π) = S.
π = (3, 6)(2, 5)(1, 4, 7, 8) 7→ ΦS(π) = (a,

b

)(a,

b

)(a, a,

b

,

c

).
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that preserves the cycle structure:

Write π in cycle form,

and replace entries 1, . . . , s1 with a, entries
s1 + 1, . . . , s2 with b, etc.

Example
Let n = 8 and S = {4, 7}, so wt(S) = a4b3c.
Take π = 4567·238·1 ∈ Sn, which has Des(π) = S.
π = (3, 6)(2, 5)(1, 4, 7, 8)

7→ ΦS(π) = (a,

b

)(a,

b

)(a, a,

b

,

c

).
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From permutations to multisets of necklaces: Des ⊆ S

In 1993, Gessel and Reutenauer described a bijection

ΦS : {π ∈ Sn : Des(π) ⊆ S} → {M ∈Mn : wt(M) = wt(S)}

that preserves the cycle structure.

To recover π from the multiset of necklaces:

Replace each entry with the periodic sequence obtained by reading
around the necklace.
Order these sequences lexicographically (breaking ties consistently).

Example

The multiset of necklaces (a, b)(a, b)(a, a, b, c) gives periodic sequences
(abab . . . , baba . . . )(abab . . . , baba . . . )(aabc . . . , abca . . . , bcaa . . . , caab . . . ).
We get π = (3, 6)(2, 5)(1, 4, 7, 8).
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From permutations to multisets of necklaces: Des ⊆ S

Me
n = multisets of necklaces of even length,

except possibly for one necklace of length one.

{π ∈ So
n : Asc(π) ⊆ S} ! {π ∈ Se

n : Des(π) ⊆ S}

↓ ΦS

{M ∈Me
n : wt(M) = wt(S)}
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From permutations to multisets of necklaces: Asc ⊆ S

To deal with ascent sets, we use a related bijection due to
Gessel–Restivo–Reutenauer ’12 and Steinhardt ’10.

In this bijection, the role of descents is played by ascents, and the role of
the lexicographic order is played by the alternating lexicographic order.

Unfortunately, the resulting necklaces are not primitive in general. ������

However, those of odd length are primitive������ and distinct! ������

Mo
n = multisets of distinct necklaces of odd length.

We get a bijection

ΞS : {π ∈ So
n : Asc(π) ⊆ S} → {M ∈Mo

n : wt(M) = wt(S)}.
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The bijections so far

Me
n = multisets of necklaces of even length,

except possibly for one necklace of length one.

Mo
n = multisets of distinct necklaces of odd length.

{π ∈ So
n : Asc(π) ⊆ S} ! {π ∈ Se

n : Des(π) ⊆ S}

ΞS ↓ ↓ ΦS

{M ∈Mo
n : wt(M) = wt(S)} {M ∈Me

n : wt(M) = wt(S)}

We will interpret multisets of necklaces as words.
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Lyndon words

A Lyndon word is a primitive word that is lexicographically smaller than all
of its cyclic rotations. Denote the set of Lyndon words by L ⊆ W.

Example: aabab ∈ L, but ababa /∈ L.

We identify necklaces with Lyndon words, e.g., (a, b, a, b, a)↔ aabab.

Theorem (Lyndon ’58)
Every w ∈ W has a unique Lyndon factorization w = `1|`2| . . . |`m where
`i ∈ L for all i , and `1 ≥ `2 ≥ · · · ≥ `m lexicographically.

Example
w = dedccedcdbdbdaabd = de|d|ccedcd|bd|bd|aabd

↔ (d, e)(d)(c, c, e, d, c, d)(b, d)(b, d)(a, a, b, d).

We identify multisets of necklaces with words.
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The bijections so far
Define the following sets of length-n words:
We

n = words all of whose Lyndon factors have even length,
except possibly for one factor which has length one.

Wo
n = words all of whose Lyndon factors have odd length

and are distinct.

{π ∈ So
n : Asc(π) ⊆ S} ! {π ∈ Se

n : Des(π) ⊆ S}

ΞS ↓ ↓ ΦS

{M ∈Mo
n : wt(M) = wt(S)} {M ∈Me

n : wt(M) = wt(S)}

≡ ≡

{w ∈ Wo
n : wt(w) = wt(S)}

?←→

{w ∈ We
n : wt(w) = wt(S)}

We want a weight-preserving bijection between Wo
n and We

n .
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A weight preserving bijection Ψ :Wo
n →We

n

Given w ∈ Wo
n (suppose n is even), initially set O = w and E = −.

Repeat until O is empty:

Let O = o1|o2| . . . |om be the Lyndon factorization of O.

If |om| ≥ 2, write om = r --s where s is its lexicographically smallest
proper suffix.

Say that om is splittable if s < om−1 (where om−1 :=∞ if m = 1).

Update (O,E) to
(o1o2 . . . om−1r , sE) if om is splittable and |s| is even,
(o1o2 . . . om−1s, rE) if om is splittable and |r | is even,
(o1o2 . . . om−2, omom−1E) if om is not splittable.

Set Ψ(w) = E .
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A weight preserving bijection Ψ :Wo
n →We

n

Let O = o1|o2| . . . |om be the Lyndon factorization of O.
If |om| ≥ 2, write om = r --s where s is its smallest proper suffix.
Say that om is splittable if s < om−1 (where om−1 :=∞ if m = 1).

(O,E) 7→


(o1o2 . . . om−1r , sE) if om splittable and |s| even,
(o1o2 . . . om−1s, rE) if om splittable and |r | even,
(o1o2 . . . om−2, omom−1E) if om not splittable.

Example

O E

w =

−

= Ψ(w)
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A weight preserving bijection Ψ :Wo
n →We

n

Theorem
The map Ψ :Wo

n →We
n is a weight-preserving bijection.

Composing the three maps, we obtain the desired bijection:

{π ∈ So
n : Asc(π) ⊆ S}

Φ−1
S ◦Ψ◦ΞS
 {π ∈ Se

n : Des(π) ⊆ S}

ΞS ↓ ↓ ΦS

{M ∈Mo
n : wt(M) = wt(S)} {M ∈Me

n : wt(M) = wt(S)}

≡ ≡

{w ∈ Wo
n : wt(w) = wt(S)} Ψ−→ {w ∈ We

n : wt(w) = wt(S)}
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Bonus: a short generating function proof

|{w ∈ Wo
n : wt(w) = xα1

1 xα2
2 . . . }| = |{w ∈ We

n : wt(w) = xα1
1 xα2

2 . . . }|

Proof:
Write L = Lo t Le , separating Lyndon words of odd and even length.
GF for Wo =

⋃
n≥0Wo

n (words with odd and distinct Lyndon factors):∑
w∈Wo

wt(w) =
∏
`∈Lo

(1 + wt(`)) .

GF for We =
⋃

n≥0We
n (even Lyndon factors, except one of length 1):∑

w∈We

wt(w) = (1 + x1 + x2 + . . . )
∏
`∈Le

1

1− wt(`)
.

Thus, what we want to prove is∏
`∈Lo

(1 + wt(`)) = (1 + x1 + x2 + . . . )
∏
`∈Le

1

1− wt(`)
,
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Bonus: a short proof using generating functions

or equivalently,∏
`∈Lo

(1 + wt(`))
∏
`∈Le

(1− wt(`)) = 1 + x1 + x2 + . . . .

Substituting xi 7→ −xi for all i , this is equivalent to∏
`∈Lo

(1− wt(`))
∏
`∈Le

(1− wt(`)) = 1− x1 − x2 − . . . ,

or ∏
`∈L

1

1− wt(`)
=

1

1− x1 − x2 − . . .
.

But this holds because every word has a unique Lyndon factorization!
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