Patterns in meandric systems and tree-indexed sums of Catalan numbers

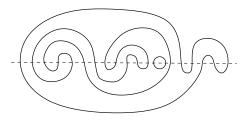
Valentin Féray joint work with Alin Bostan and Paul Thévenin

CNRS, Université de Lorraine

Permutation Patterns St Andrews, July 7th, 2025

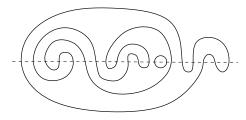
Institut Élie Cartan de Lorraine

A meandric system is a pair of two non-crossing pair-partitions.



Enumeration is straight-forward : Cat_n^2 .

A meandric system is a pair of two non-crossing pair-partitions.



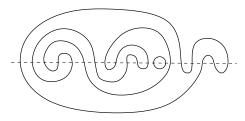
Enumeration is straight-forward : Cat_n^2 .

But many questions involving connected components are hard (and interesting! links with percolation theory, quantum field theory, ...):

Conjecture (Di Francesco-Golinelli-Guitter, '00)

The number of connected meandric systems (a.k.a. meanders) of size *n* behaves asymptotically as $CA^n n^{-\alpha}$, with $\alpha = (29 + \sqrt{145})/12 \approx 3.42$.

A meandric system is a pair of two non-crossing pair-partitions.



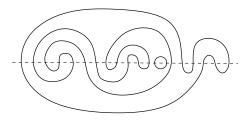
Enumeration is straight-forward : Cat_n^2 .

But many questions involving connected components are hard (and interesting! links with percolation theory, quantum field theory, ...):

Conjecture (Borga–Gwynne–Park, '23)

The largest component of a uniform random meandric system has size $n^{\beta+o_P(1)}$, where $\beta = \frac{1}{2}(3-\sqrt{2}) \approx 0.79$.

A meandric system is a pair of two non-crossing pair-partitions.



Enumeration is straight-forward : Cat_n^2 .

But many questions involving connected components are hard (and interesting! links with percolation theory, quantum field theory, ...):

Theorem (F.–Thévenin '23, conjectured by Goulden–Nica–Puder and Kargin '20) The number of connected components of a uniform random meandric system is $(\kappa + o_P(1))n$, for some constant $\kappa \approx 0.23$.

Objects of interest: meandric systems... and their patterns

All these questions can be formulated in terms of the random variable $|C_i(M_n)|$, i.e. the size of the component of a uniform random element *i* in a uniform random meandric system M_n of size *n*.

Objects of interest: meandric systems... and their patterns

All these questions can be formulated in terms of the random variable $|C_i(M_n)|$, i.e. the size of the component of a uniform random element *i* in a uniform random meandric system M_n of size *n*.

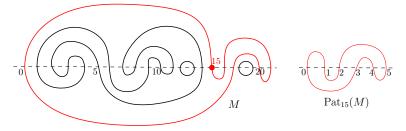
Our contribution: define a notion of shape/pattern of a connected component, and compute, for a given S,

$$\lim_{n\to+\infty}\mathbb{P}(C_i(M_n)\simeq S).$$

Note: The probability $\mathbb{P}(|C_i(M_n)| = k)$ is then a finite sum of "shape probabilities".

Definition: patterns in meandric systems

Let *M* be a meandric system, *i* an element of *M*, and set $k = |C_i(M)|$. The pattern $Pat_i(M)$ of *i* in *M* is obtained by relabelling the vertices of $C_i(M)$ with the unique increasing bijection $V(C_i(M)) \rightarrow \{0,...,2k-1\}$.



Note: $Pat_i(M)$ is a meander.

Informal statement of the results

Result 1 (F.–Thévenin '23): an expression of $\lim_{n\to+\infty} \mathbb{P}(C_i(M_n) \simeq S)$ as a mutli-indexed sum of "normalized" Catalan numbers $Cat_k = 4^{-k} Cat_k$.

Examples

$$\lim_{n \to +\infty} \mathbb{P}\left(C_{i}(M_{n}) \simeq \bigoplus\right) = \frac{1}{8} \sum_{\ell=0}^{\infty} \widetilde{\operatorname{Cat}}_{\ell}^{2}$$

$$\lim_{n \to +\infty} \mathbb{P}\left(C_{i}(M_{n}) \simeq \bigoplus\right) = \frac{1}{64} \cdot \sum_{\ell_{1}, \ell_{2}, \ell_{3} \ge 0} \widetilde{\operatorname{Cat}}_{\ell_{1}} \widetilde{\operatorname{Cat}}_{\ell_{2}} \widetilde{\operatorname{Cat}}_{\ell_{3}} \widetilde{\operatorname{Cat}}_{\ell_{1}+\ell_{3}}$$

$$(2)$$

Informal statement of the results

Result 1 (F.–Thévenin '23): an expression of $\lim_{n\to+\infty} \mathbb{P}(C_i(M_n) \simeq S)$ as a mutli-indexed sum of "normalized" Catalan numbers $Cat_k = 4^{-k} Cat_k$.

Result 2 (Bostan–F.–Thévenin '25): an algorithm computing these sums (in particular, they are always polynomials in $1/\pi$).

Examples

$$\lim_{n \to +\infty} \mathbb{P}\left(C_{i}(M_{n}) \simeq \bigoplus\right) = \frac{1}{8} \sum_{\ell=0}^{\infty} \widetilde{\operatorname{Cat}}_{\ell}^{2} = \frac{2}{\pi} - \frac{1}{2} \approx 0.137$$
(1)
$$\lim_{n \to +\infty} \mathbb{P}\left(C_{i}(M_{n}) \simeq \bigoplus\right) = \frac{1}{64} \cdot \sum_{\ell_{1}, \ell_{2}, \ell_{3} \ge 0} \widetilde{\operatorname{Cat}}_{\ell_{1}} \widetilde{\operatorname{Cat}}_{\ell_{2}} \widetilde{\operatorname{Cat}}_{\ell_{3}} \widetilde{\operatorname{Cat}}_{\ell_{1}+\ell_{3}} = \frac{1}{4} - \frac{2}{3\pi} \approx 0.038$$
(2)

Informal statement of the results

Result 1 (F.–Thévenin '23): an expression of $\lim_{n\to+\infty} \mathbb{P}(C_i(M_n) \simeq S)$ as a mutli-indexed sum of "normalized" Catalan numbers $Cat_k = 4^{-k} Cat_k$.

Result 2 (Bostan–F.–Thévenin '25): an algorithm computing these sums (in particular, they are always polynomials in $1/\pi$).

Examples

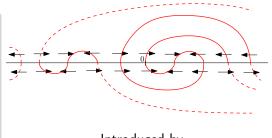
$$\lim_{n \to +\infty} \mathbb{P}\left(C_{i}(M_{n}) \simeq \bigoplus\right) = \frac{1}{8} \sum_{\ell=0}^{\infty} \widetilde{\operatorname{Cat}}_{\ell}^{2} = \frac{2}{\pi} - \frac{1}{2} \approx 0.137$$
(1)
$$\lim_{n \to +\infty} \mathbb{P}\left(C_{i}(M_{n}) \simeq \bigoplus\right) = \frac{1}{64} \cdot \sum_{\ell_{1}, \ell_{2}, \ell_{3} \ge 0} \widetilde{\operatorname{Cat}}_{\ell_{1}} \widetilde{\operatorname{Cat}}_{\ell_{2}} \widetilde{\operatorname{Cat}}_{\ell_{3}} \widetilde{\operatorname{Cat}}_{\ell_{1}+\ell_{3}} = \frac{1}{4} - \frac{2}{3\pi} \approx 0.038$$
(2)

Next few slides: I'll explain Result 1.

The Uniform Infinite Meandric System, or Infinite Noodle (Soup)

Definition (UIMS)

Draw two bi-infinite sequences of i.i.d. left/right arrows and connect them in the unique non-crossing way. The resulting configuration is called Infinite Noodle, and denoted M_{∞} .

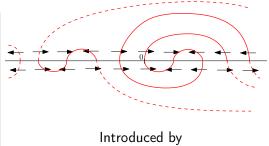


Introduced by Curien–Kozma–Sidoravicius–Tournier, '19.

The Uniform Infinite Meandric System, or Infinite Noodle (Soup)

Definition (UIMS)

Draw two bi-infinite sequences of i.i.d. left/right arrows and connect them in the unique non-crossing way. The resulting configuration is called Infinite Noodle, and denoted M_{∞} .



Curien-Kozma-Sidoravicius-Tournier, '19.

Proposition (F.-Thévenin, '23)

$$\lim_{n\to+\infty}\mathbb{P}(C_i(M_n)\simeq S)=\mathbb{P}(C_0(M_\infty)\simeq S).$$

Note: whether $C_0(M_{\infty})$ is a.s. finite or not is an open question.

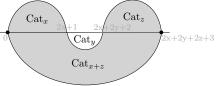
Up to changing the place of 0, a realization of M_{∞} with $C_0(M_{\infty}) \simeq S$ looks like this:

Hence

$$\mathbb{P}[C_0(M_\infty) \simeq S] = 2\sum_{k \ge 1} \operatorname{Cat}_k^2 2^{-4k-4} = \frac{1}{8} \sum_{k \ge 1} \widetilde{\operatorname{Cat}}_k^2.$$

More interesting: $S = \longleftrightarrow$

Up to changing the place of 0, a configuration with $C_0(M_\infty) \simeq S$ looks like this:

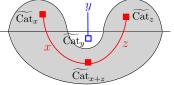


Hence

$$\mathbb{P}[C_0(M_{\infty}) \simeq S] = 4 \sum_{x,y,z \ge 0} \operatorname{Cat}_x \operatorname{Cat}_y \operatorname{Cat}_z \operatorname{Cat}_{x+z} 2^{-4x-2y-4z-8}$$
$$= \frac{1}{64} \sum_{x,y,z \ge 0} \widetilde{\operatorname{Cat}}_x \widetilde{\operatorname{Cat}}_y \widetilde{\operatorname{Cat}}_z \widetilde{\operatorname{Cat}}_{x+z}.$$

More interesting: $S = \longleftrightarrow$

Up to changing the place of 0, a configuration with $C_0(M_\infty) \simeq S$ looks like this:



Hence

$$\mathbb{P}[C_0(M_{\infty}) \simeq S] = 4 \sum_{x,y,z \ge 0} \operatorname{Cat}_x \operatorname{Cat}_y \operatorname{Cat}_z \operatorname{Cat}_{x+z} 2^{-4x-2y-4z-8}$$
$$= \frac{1}{64} \sum_{x,y,z \ge 0} \widetilde{\operatorname{Cat}}_x \widetilde{\operatorname{Cat}}_y \widetilde{\operatorname{Cat}}_z \widetilde{\operatorname{Cat}}_{x+z}.$$

Let us draw the "dual forest" of *S*. We observe that there is one summation index for each edge of the forest, and one Catalan factor for each vertex.

General S: tree indexed sums of Catalan numbers

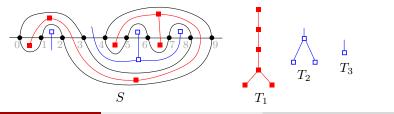
For a tree *T*, we set
$$\Sigma(T) := \sum_{(x_e) \in \mathbb{Z}^{E(T)}_+} \left(\prod_{v \in V(T)} \widetilde{\operatorname{Cat}}_{\sum_{e \ni v} x_e} \right).$$

Proposition (F.-Thévenin '23)

For any meander S of size k, we have

$$\mathbb{P}(C_0(M_\infty) \simeq S) = 2^{-4k+1} k \prod_{i=1}^d \Sigma(T_i),$$

where the T_i 's are the "dual trees" of the meander.



Computing $\Sigma(T)$ - main result

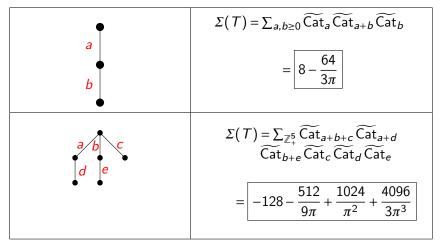
For a tree
$$T$$
, we set $\Sigma(T) := \sum_{(x_e) \in \mathbb{Z}^{E(T)}_+} \left(\prod_{v \in V(T)} \widetilde{\operatorname{Cat}}_{\Sigma_{e^{\ni v}} x_e} \right).$

Theorem (Bostan-F.-Thévenin '25)

For any tree T, the sum $\Sigma(T)$ is a polynomial in $1/\pi$ of degree at most $|V_T|/2$.

Moreover, we provide an algorithm to compute these sums.

Computing $\Sigma(T)$ - examples



Mathematica (or Maple) can deal with the first example, but not with the second one!

$\Sigma(-)$ and hypergeometric functions

We want to compute $\Sigma(\blacksquare) = \sum_{x \in \mathbb{Z}_+} u_x$, where $u_x = (Cat_x 4^{-x})^2$.

$\Sigma(--)$ and hypergeometric functions

We want to compute $\Sigma(\blacksquare) = \sum_{x \in \mathbb{Z}_+} u_x$, where $u_x = (Cat_x 4^{-x})^2$.

Reminder: one has the recurrence $(x+2)\operatorname{Cat}_{x+1} = 2(2x+1)\operatorname{Cat}_x$. Hence the quotient u_{x+1}/u_x is a rational function in x. Such terms are called hypergeometric. Standard hypergeometric sums are

$${}_{2}F_{1}(a,b;c;z) := \sum_{n \ge 0} \frac{a^{|n|}b^{|n|}}{c^{\dagger n}} \frac{z^{n}}{n!},$$

where $u^{\dagger n} := u(u+1)\cdots(u+n-1).$

$\Sigma(--)$ and hypergeometric functions

We want to compute $\Sigma(\blacksquare) = \sum_{x \in \mathbb{Z}_+} u_x$, where $u_x = (Cat_x 4^{-x})^2$.

Reminder: one has the recurrence $(x+2)\operatorname{Cat}_{x+1} = 2(2x+1)\operatorname{Cat}_x$. Hence the quotient u_{x+1}/u_x is a rational function in x. Such terms are called hypergeometric. Standard hypergeometric sums are

$${}_{2}F_{1}(a,b;c;z) := \sum_{n \ge 0} \frac{a^{n}b^{n}}{c^{\dagger n}} \frac{z^{n}}{n!},$$

where $u^{\dagger n} := u(u+1)\cdots(u+n-1).$

In fact, we have $\Sigma(-) = 4 \cdot {}_2F_1(-\frac{1}{2}, -\frac{1}{2}; 1; 1) - 4$.

$\Sigma(-)$ and hypergeometric functions

We want to compute $\Sigma(\blacksquare) = \sum_{x \in \mathbb{Z}_+} u_x$, where $u_x = (Cat_x 4^{-x})^2$.

Reminder: one has the recurrence $(x+2)\operatorname{Cat}_{x+1} = 2(2x+1)\operatorname{Cat}_x$. Hence the quotient u_{x+1}/u_x is a rational function in x. Such terms are called hypergeometric. Standard hypergeometric sums are

$${}_{2}F_{1}(a,b;c;z) := \sum_{n\geq 0} \frac{a^{n}b^{n}}{c^{n}} \frac{z^{n}}{n!},$$

where $u^{\uparrow n} := u(u+1)\cdots(u+n-1)$.

In fact, we have $\Sigma(-) = 4 \cdot {}_2F_1(-\frac{1}{2}, -\frac{1}{2}; 1; 1) - 4$.

Lemma (Gauss identity)

If c - a - b > 0, we have

$$_{2}F_{1}(a,b;c;1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}.$$

Thus
$$_2F_1(-\frac{1}{2},-\frac{1}{2};1;1) = \frac{4}{\pi}$$
 and $\Sigma(-) = \frac{16}{\pi} - 4$.

$\Sigma(---)$ and the quadratic recurrence

We want to compute $\Sigma(\blacksquare \blacksquare) = \sum_{x,y \in \mathbb{Z}_+} \operatorname{Cat}_x \operatorname{Cat}_y \operatorname{Cat}_{x+y} 16^{-x-y}$.

$\Sigma(---)$ and the quadratic recurrence

We want to compute $\Sigma(\blacksquare \blacksquare) = \sum_{x,y \in \mathbb{Z}_+} \operatorname{Cat}_x \operatorname{Cat}_y \operatorname{Cat}_{x+y} 16^{-x-y}$. Rewrite the sum using Z = x + y.

$$\Sigma(\bullet \bullet \bullet \bullet) = \sum_{Z \ge 0} \operatorname{Cat}_Z 16^{-Z} \left(\sum_{\substack{x, y \ge 0 \\ x+y=Z}} \operatorname{Cat}_x \operatorname{Cat}_y \right)$$
$$= \sum_{Z \ge 0} \operatorname{Cat}_Z \operatorname{Cat}_{Z+1} 16^{-Z}.$$

Looks like $\Sigma(---)$ with a shift of indices.

$\Sigma(---)$ and the quadratic recurrence

We want to compute $\Sigma(\blacksquare \blacksquare) = \sum_{x,y \in \mathbb{Z}_+} \operatorname{Cat}_x \operatorname{Cat}_y \operatorname{Cat}_{x+y} 16^{-x-y}$. Rewrite the sum using Z = x + y.

$$\Sigma(\bullet \bullet \bullet \bullet \bullet) = \sum_{Z \ge 0} \operatorname{Cat}_Z 16^{-Z} \left(\sum_{\substack{x, y \ge 0 \\ x+y=Z}} \operatorname{Cat}_x \operatorname{Cat}_y \right)$$
$$= \sum_{Z \ge 0} \operatorname{Cat}_Z \operatorname{Cat}_{Z+1} 16^{-Z}.$$

Looks like $\Sigma(---)$ with a shift of indices.

Again, this can be related to hypergeometric functions, namely

$$\Sigma(\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{1}) = 8 - 8 \cdot {}_{2}F_{1}(-\frac{1}{2}, \frac{1}{2}; 2; 1)$$

and Gauss identity allows to compute

$$\Sigma(\bullet \bullet \bullet \bullet \bullet) = 8 - \frac{64}{3\pi}.$$

We want to compute $\Sigma(\square\square) = \sum_{x,y \in \mathbb{Z}_+} \operatorname{Cat}_x \operatorname{Cat}_{x+y} 4^{-2x-y}$.

$\Sigma($ — —): changing variables and manipulating inequalities

We want to compute $\Sigma(\square\square) = \sum_{x,y \in \mathbb{Z}_+} \operatorname{Cat}_x \operatorname{Cat}_{x+y} 4^{-2x-y}$.

Set
$$z = x + y$$
.

$$\Sigma(\Box \longrightarrow \Box) = \sum_{z > x > 0} \operatorname{Cat}_{x} \operatorname{Cat}_{z} 4^{-x-z}.$$

$\Sigma($ — —): changing variables and manipulating inequalities

We want to compute
$$\Sigma(\square\square) = \sum_{x,y \in \mathbb{Z}_+} \operatorname{Cat}_x \operatorname{Cat}_{x+y} 4^{-2x-y}$$
.

Set
$$z = x + y$$
.
 $\Sigma($ $\square \square \square \square) = \sum_{z > x > 0} \operatorname{Cat}_x \operatorname{Cat}_z 4^{-x-z}$.

By symmetry, we also have

$$\Sigma(\square\square) = \sum_{x \ge z \ge 0} \operatorname{Cat}_x \operatorname{Cat}_z 4^{-x-z},$$

and thus

$$2\Sigma(\mathbf{p}_{x,z\geq 0}) = \sum_{\substack{x,z\geq 0\\ x=z}} \operatorname{Cat}_{x} \operatorname{Cat}_{z} 4^{-x-z} + \sum_{\substack{x,z\geq 0\\ x=z}} \operatorname{Cat}_{x} \operatorname{Cat}_{z} 4^{-x-z}$$
$$= \left(\sum_{\substack{x\geq 0\\ x\geq 0}} \operatorname{Cat}_{x} 4^{-x}\right)^{2} + \Sigma(\mathbf{p}_{x}-\mathbf{p}_{x}) = 4 + \left(\frac{16}{\pi} - 4\right) = \frac{16}{\pi}.$$

• We forget about edge variables, and use vertex-indexed variables constrained by one equality and inequalities.

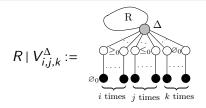
- We forget about edge variables, and use vertex-indexed variables constrained by one equality and inequalities.
- We need to generalize the problem with shifts, more general inequalities, ...

- We forget about edge variables, and use vertex-indexed variables constrained by one equality and inequalities.
- We need to generalize the problem with shifts, more general inequalities, ...
- The base case uses the linear recurrence of Catalan numbers and Gauss hypergeometric summation identity.

- We forget about edge variables, and use vertex-indexed variables constrained by one equality and inequalities.
- We need to generalize the problem with shifts, more general inequalities, ...
- The base case uses the linear recurrence of Catalan numbers and Gauss hypergeometric summation identity.
- The induction step uses inequality manipulations and the Catalan quadratic recurrence.

- We forget about edge variables, and use vertex-indexed variables constrained by one equality and inequalities.
- We need to generalize the problem with shifts, more general inequalities, ...
- The base case uses the linear recurrence of Catalan numbers and Gauss hypergeometric summation identity.
- The induction step uses inequality manipulations and the Catalan quadratic recurrence.
- The induction is intricate (see next slide)....

A linear system for long stars



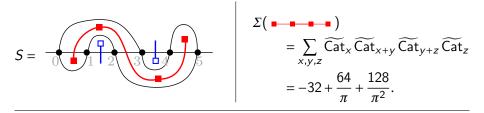
Lemma

For any "rootstock" R, any decoration Δ and any $d \ge 2$, we have

$$\begin{pmatrix} 2 & 1 & 0 & \dots & 0 \\ 1 & 2 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 2 & 1 \\ 0 & \dots & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} S(R \mid V_{1,d-1,0}^{\Delta}) \\ \vdots \\ S(R \mid V_{d-1,1,0}^{\Delta}) \end{pmatrix} = \begin{pmatrix} X_1 \\ \vdots \\ X_{d-1} \end{pmatrix} - \begin{pmatrix} S(R \mid V_{0,d,0}^{\Delta}) \\ 0 \\ \vdots \\ 0 \\ S(R \mid V_{d,0,0}^{\Delta}) \end{pmatrix},$$

where, for $1 \le i \le d-1$, $X_i = S(R \mid V_{i-1,d-1-i,2}^{\Delta}) + 2S(R \mid V_{i-1,d-1-i,1}^{\Delta}) \cdot S(\blacksquare) + S(R \mid V_{i-1,d-1-i,0}^{\Delta}) \cdot S(\blacksquare)^2$.

Thanks for your attention!



$$\lim_{n \to +\infty} \mathbb{P}(C_0(M_\infty) \simeq S) = \frac{3}{2^{11}} \Sigma(---)^2$$
$$= -\frac{3}{4} + \frac{3}{2\pi} + \frac{3}{\pi^2} \approx 0.031428$$

V. Féray (CNRS, IECL)

PP, 2025-07 17 / 17