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Some history
Klazar (1996), Sagan (2006):

Two different approaches to pattern-avoidance in set partitions
of type A:

1 Following Klazar, based on avoiding some order of elements in
the blocks of the set partitions (where the blocks are ordered
increasingly with respect to their minimal elements).

2 Based on their restricted-growth words representation.

Pattern-avoidance in the set partitions sense implies pattern-
avoidance in the RG-words representation sense, but not the
other way around.
Characterization of all the pattern-avoidance classes of one pat-
tern of size 3.

Goyt (2008): Pattern-avoidance classes of some families of set
partitions of type A.
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Some history (cont.)

Bloom and Elizalde (2013): Perfect matchings and partitions that
avoid patterns of length 3, based on a different notion of pattern-
avoidance for set partitions that involve arc-diagrams.

Bloom and Saracino (2016): Using the definition of Klazar for
pattern-avoidance and determining all pattern-avoidance classes for
patterns with exactly two blocks, one of which is a singleton block,
among some other patterns of length 4.

Mansour et al. (2008/2012): Full characterization of all classes
of set partitions that avoid a pattern of lengths 3,4,5 or avoid two
such patterns, with respect to their RG-word representation.
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Set partitions of type B (Dolgachev-Lunts & Reiner)

Definition

Denote: [±n] := {±1, . . . , ±n}.

A set partition of [n] of type B or a signed set partition is a set
partition of the set [±n] satisfying the following conditions:

If B appears as a block, then −B (which is obtained from B by
negating all its elements) also appears in that partition.

There exists at most one block satisfying −B = B. This block
is called the zero block, denoted by B0.
If it exists, B = {±i | i ∈ C} ⊆ [±n] for some C ⊆ [n].

Example{
B0 = {1, −1, 4, −4}, B = {2, 3, −5}, −B = {−2, −3, 5},

B′ = {6}, −B′ = {−6}

}
.
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Set partitions of type B (Dolgachev-Lunts & Reiner) (cont.)

The representative block for the pair of blocks B, −B is the one
containing the minimal positive number appearing in B ∪ −B.

Example
The block {2, 3, −5} represents the pair of blocks:

B = {−2, −3, 5}, −B = {2, 3, −5}.

The standard presentation of a set partition of type B is given
by writing first the zero block if it exists, and then the non-zero
representative blocks in such a way that the sequence of absolute
values of the minimal elements of the blocks is increasing.

Example

{B0 = {1, −1, 4, −4}, B1 = {2, 3, −5}, B2 = {6}} .
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RG-words of signed set partitions (Bagno-Garber-Komatsu 2022)

Definition

Let ΣB = {0, ±1, ±2, . . . , ±n} and define the following order on
ΣB: 0 ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ · · · ≺ −n ≺ n.

A restricted-growth (RG-)word of type B of the second kind
of length n is a word ω = ω1 · · · ωn in the alphabet ΣB, which
satisfies:
(1) ω1 = 0 or ω1 = 1.

(2) For each 2 ≤ t ≤ n: ωt ⪯ max {|ω1|, . . . , |ωt−1|} + 1, with
respect to the order defined above. In the case that
|ωt | = max {|ω1|, . . . , |ωt−1|} + 1, we demand: ωt > 0.

Denote by RB(n, k) the set of RG-words of type B of length n whose
maximal element is k. Define: RB

n =
⋃
k

RB(n, k).
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RG-words of signed set partitions (Bagno-Garber-Komatsu 2022) (cont.)

Given a set partition of [n] of type B, written in its standard pre-
sentation, P = {B0, B1, . . . , Bk}, we associate to it an RG-word
ω = ω1 · · · ωn of type B:

For each 1 ≤ j ≤ n, ωj is the number of the representative
block where j or −j appears.
If j appears in the representative block, then ωj is the number
of the block containing j ; otherwise, ωj is the number of this
block, with a negative sign.

Example
Given a set partition of [7] of type B:

P = {B0 = {2, 5, −2, −5}, B1 = {1, −7}, B2 = {3, −4, 6}}.

Its associated RG-word of type B is:
ω = 102(−2)02(−1).
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Pattern avoidance in RG-words of type B

Definition
Let ω = ω1 · · · ωn ∈ RB

n and let τ = τ1 · · · τk ∈ Σ∗
B for some k,

such that {|τ1|, . . . , |τk |} = {0, 1, . . . , d} for some d ≤ n.

We say that ω contains τ , if there are k indices,

1 ≤ i1 < i2 < · · · < ik ≤ n

such that ωia@ωib if and only if τa@τb, for all 1 ≤ i < j ≤ k and
@ ∈ {≺, =, ≻}.

τ is usually called a signed pattern. If ω does not contain τ , we
say that ω avoids τ . For an arbitrary finite collection of patterns P,
we say that ω avoids P if ω avoids each τ ∈ P.

Example
The RG-word 001(-1)(-1)21 contains 100, but avoids 210.
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The generating tree T (P) (following Mansour et al.)

Notation: RB
n (τ) is the set of all τ -avoiding RG-words of signed

set partitions in RB
n .

RB
n (P) is the set of all RG-words avoiding the set of patterns in P.

Starting with the root ϵ (which occupies level 0), the children of
the node ω1 · · · ωn−1 ∈ RB

n−1(P) in level n − 1 are all the elements
ω1 · · · ωn−1ωn ∈ RB

n (P).
For a given set of patterns P and an RG-word ω, let T (P; ω) denote
the subtree in T (P) whose root is ω.
We define an equivalence relation on the set of nodes of T (P):
ω ∼ ω′ if the subtrees T (P; ω), T (P; ω′) are isomorphic in the sense
of ordered trees.
For every equivalence class, we choose a unique representative.
Let T [P] be the same tree as T (P), where we change every label
of each node to be its unique representative of corresponding class.
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The main procedure for computing the generating function

(1) After setting the first succession rule ϵ ⇝ 0, 1 (that describes
the children of the empty word as 0 and 1), we make an educated
guess for the succession rules of T [P] by computing the first m
levels of T [P]. Then, we prove that this set is indeed the entire set
of succession rules for T [P].

(2) For each succession rule of the type v ⇝ v (1), v (2), . . . , v (ℓ),
define Av (x) as the generating function for the number of nodes
at level n in the subtree T (P; v) of T [P], where the root of this
subtree is the vertex v . Then each succession rule of the type
v ⇝ v (1), v (2), . . . , v (ℓ) can be translated into the equation:

Av (x) = 1 + x
ℓ∑

j=1
Av (j)(x).

(3) Solve the obtained system of equations for finding Aϵ(x), using
different types of techniques, such as guessing the solution and then
proving it or the kernel method.
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An example of the procedure using generating trees
We construct the first levels of T [021]:

ϵ

0

00 ∼ 0

01

010 ∼ 01

011 ∼ 01

012 ∼ 01

1

10

100 ∼ 10

10(-1) ∼ 10

101 ∼ 01

102 ∼ 01

1(-1)

1(-1)0 ∼ 10

1(-1)(-1) ∼ 1(-1)

1(-1)1 ∼ 1(-1)

1(-1)2 ∼ 1(-1)

11 ∼ 1

12

120

1200 ∼ 120

120(-1) ∼ 120

1201 ∼ 10

1202 ∼ 01

1203 ∼ 01

12(-1)

12(-1)0 ∼ 120

12(-1)(-1) ∼ 12(-1)

12(-1)1 ∼ 12(-1)

12(-1)2 ∼ 1(-1)

12(-1)3 ∼ 1(-1)

121 ∼ 12

122 ∼ 12

123 ∼ 12
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An example of the procedure using generating trees (cont.)

Hence, we have the following succession rules:

ϵ⇝ 0, 1,

0⇝ 0, 01,

1⇝ 1(−1), 10, 1, 12,

01⇝ 01, 01, 01,

1(−1)⇝ 10, 1(−1), 1(−1), 1(−1),
10⇝ 10, 10, 01, 01,

12⇝ 12(−1), 120, 12, 12, 12,

12(−1)⇝ 120, 12(−1), 12(−1), 1(−1), 1(−1),
120⇝ 120, 120, 10, 01, 01.
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An example of the procedure using generating trees (cont.)

Next, we translate the succession rules into functional equations:

Aϵ(x) = 1 + xA0(x) + xA1(x),
A0(x) = 1 + xA0(x) + xA01(x),
A1(x) = 1 + xA1(−1) + xA10(x) + xA1(x) + xA12(x),

A01(x) = 1 + 3xA01(x),
A1(−1)(x) = 1 + 3xA1(−1)(x) + xA10(x),

A10(x) = 1 + 2xA10(x) + 2xA01(x),
A12(x) = 1 + xA12(−1)(x) + xA120(x) + 3xA12(x),

A12(−1)(x) = 1 + 2xA12(−1)(x) + xA120(x) + 2xA1(−1)(x),
A120(x) = 1 + 2xA120(x) + xA10(x) + 2xA01(x).

Solving for Aϵ(x):

F021(x) = Aϵ(x) = 5x7 − 168x6 + 421x5 − 449x4 + 256x3 − 82x2 + 14x − 1
(3x − 1)3(2x − 1)3(x − 1) .
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Avoiding patterns of length 2 - Enumerative results (BGMS 2025)

Theorem (BGMS 2025)∑
n≥0

∣∣∣RB
n (00)

∣∣∣ xn

n! = (1 + x)ex+ x2
2 ,

∑
n≥0

∣∣∣RB
n (01)

∣∣∣ xn = 1−x+x2

(1−x)3 ,

∑
n≥0

∣∣∣RB
n (10)

∣∣∣ xn = 1
1−2x .

Eli Bagno, David Garber, Toufik Mansour and Amir Safadi Pattern avoidance in RG-words of type B 24 / 35



Avoiding patterns of length 3 - Enumerative results (BGMS 2025)

τ {|RB
n (τ)|}9

n=1 Enum.
000 2, 6, 22, 98, 486, 2692, 16346, 107382, 756748
001, 010 2, 6, 22, 87, 357, 1517, 6677, 30407, 143027
011 2, 6, 22, 87, 361, 1554, 6907, 31609, 148664 e✓
012 2, 6, 22, 84, 315, 1138, 3941, 13093, 41857 o✓
021 2, 6, 22, 86, 339, 1322, 5069, 19084, 70583 o✓
100 2, 6, 22, 92, 432, 2224, 12392, 74064, 470944 e✓
101, 110 2, 6, 22, 91, 412, 2002, 10306, 55709, 314146
102, 120 2, 6, 22, 85, 330, 1276, 4916, 18901, 72602 o✓
201, 210 2, 6, 23, 100, 467, 2285, 11559, 59960, 317201 o✓

We denote o✓ (e✓) where we have computed the ordinary (expo-
nential) generating function.

None of the sequences appears in the OEIS.
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Avoiding patterns of length 2 - Schur-positivity

Let x = {x1, x2, . . . } be a countably infinite set of commuting vari-
ables and let Q[[x]] be the algebra of formal power series over Q.

A power series f ∈ Q[[x]] is called symmetric if it has a bounded
degree and it is invariant under any permutation of variables.

Denote by Symn the vector space of symmetric functions, homoge-
neous of degree n. Each basis for Symn is indexed by partitions λ
of n, or equivalently, by Young diagrams with n boxes.

Definition
A quasi-symmetric function is a formal power series g of bounded
degree satisfying that any two of its monomials xn1

i1 . . . xnk
ik (where

i1 < · · · < ik) and xn1
j1 . . . xnk

jk (where j1 < · · · < jk) have the same
coefficient in g .
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Avoiding patterns of length 2 - Schur-positivity (cont.)
The most important basis for Symn is the set of Schur functions

{sλ | λ ⊢ n}.

Definition
A symmetric function is called Schur-positive if all coefficients in
its expansion in the basis of Schur functions are nonnegative.

Definition

For each subset D ⊆ [n − 1], define the fundamental quasi-
symmetric function: Fn,D(x) :=

∑
i1≤i2≤...≤in
ij <ij+1 if j∈D

xi1xi2 · · · xin .

The fundamental basis for the vector space of homogeneous quasi-
symmetric functions of degree n over Q consists of the fundamental
quasi-symmetric functions.
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Avoiding patterns of length 2 - Schur-positivity (cont.)

Let B be a (multi-)set of combinatorial objects, equipped with a
descent map Des : B → P([n − 1]), which associates to each ele-
ment b ∈ B a subset Des(b) ⊆ [n − 1]. Define the quasi-symmetric
function:

Qn(B) :=
∑
b∈B

m(b, B)Fn,Des(b),

where m(b, B) is the multiplicity of the element b ∈ B.

The descent set of a standard Young tableau T is:

Des(T ) = {i | i + 1 is in a lower row than i in T}.

Example

Given T =
1 3 5
2 4 7
6 , we have: Des(T ) = {1, 3, 5}.
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Avoiding patterns of length 2 - Schur-positivity (cont.)
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Avoiding patterns of length 2 - Schur-positivity (cont.)

Theorem (Gessel)
For every partition λ ⊢ n, Qn(SYT(λ)) = sλ.

Hence, proving Schur-positivity of a set E with respect to some
descent function, amounts to defining a descent-preserving bijection
φ : E →

⋃
λ⊢n

SYT(λ), such that for each λ ⊢ n and S, T ∈ SYT(λ),

one has |φ−1(S)| = |φ−1(T )|.

Definition
Given a set of pattern RG-words P, let the pattern quasi-
symmetric function Qn(P) =

∑
ω∈Rn(P)

Fn,Des(ω).

Question
When is Qn(P) symmetric for all n?
In that case, when is Qn(P) Schur-positive for all n?
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Avoiding patterns of length 2 - Schur-positivity (cont.)

Theorem (Gessel)
For every partition λ ⊢ n, Qn(SYT(λ)) = sλ.

Hence, proving Schur-positivity of a set E with respect to some
descent function, amounts to defining a descent-preserving bijection
φ : E →

⋃
λ⊢n

SYT(λ), such that for each λ ⊢ n and S, T ∈ SYT(λ),

one has |φ−1(S)| = |φ−1(T )|.

Definition
Given a set of pattern RG-words P, let the pattern quasi-
symmetric function Qn(P) =

∑
ω∈Rn(P)

Fn,Des(ω).

Question
When is Qn(P) symmetric for all n?
In that case, when is Qn(P) Schur-positive for all n?
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Avoiding patterns of length 2 - Schur-positivity (cont.)

Theorem (BGMS 2025)
Qn(RB

n (01)) is Schur-positive with respect to ordinary descents of
RG-words. Explicitly: Qn(RB

n (01)) = 2s(n) + 2s(n−1,1) + s(n−2,1,1).

Example (Schur-positivity of RB
4 (01))

Signed partition Associated RG-word Des SYT

{{±1, ±2, ±3, ±4}} 0000 ∅ 1 2 3 4

{{1, 2, 3, 4}} 1111 ∅ 1 2 3 4

{{1, 2, 3, −4}} 111(−1) {3} 1 2 3
4

{{±4}, {1, 2, 3}} 1110 {3} 1 2 3
4

{{1, 2, −3, −4}} 11(−1)(−1) {2} 1 2 4
3

{{±3, ±4}, {1, 2}} 1100 {2} 1 2 4
3

{{1, −2, −3, −4}} 1(−1)(−1)(−1) {1} 1 3 4
2

{{±2, ±3, ±4}, {1}} 1000 {1} 1 3 4
2

{{±4}, {1, 2, −3}} 11(−1)0 {2, 3} 1 2
3
4

{{±4}, {1, −2, −3}} 1(−1)(−1)0 {1, 3} 1 3
2
4

{{±3, ±4}, {1, −2}} 1(−1)00 {1, 2} 1 4
2
3
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Thank you for your attention!!
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