Positional statistics for separable permutations

Juan B. Gil

St. Andrews, July 2025

Penn State Altoona jgil@psu.edu

Joint work with O. Lopez and M. Weiner

Positional statistics for separable permutations

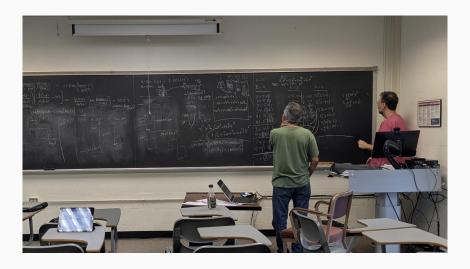
Juan B. Gil

St. Andrews, July 2025

Penn State Altoona jgil@psu.edu

Joint work (in progress) with O. Lopez and M. Weiner

Working with MikeGPT



pc: Diego G.

Notation

For $a, k \geq 1$, we let

$$S_{n,k}^{a \prec n}(P)$$

denote the set of $\sigma \in \mathcal{S}_n(P)$ such that:

- $\sigma^{-1}(n) \sigma^{-1}(a) = k$,
- $\sigma^{-1}(b) \sigma^{-1}(n) > 0$ for every $b \in \{1, \dots, a-1\}$.

Motivating example: $S_{n,k}^{1 \prec n}(1324)$

For $n \ge 2$, there is a bijection between $S_{n,1}^{1 \le n}(1324)$ and the set of 1324-avoiding dominoes* with n-2 points.

*D. Bevan, R. Brignall, A. Elvey Price, J. Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, *European J. Combin.* **88** (2020)

Motivating example: $S_{n,k}^{1 \prec n}(1324)$

For $n \ge 2$, there is a bijection between $S_{n,1}^{1 < n}(1324)$ and the set of 1324-avoiding dominoes* with n-2 points.

*D. Bevan, R. Brignall, A. Elvey Price, J. Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, *European J. Combin.* **88** (2020)

Generating function:

$$f(x) = x + 2x^2 + 6x^3 + 22x^4 + 91x^5 + 408x^6 + \cdots$$
 (A000139)

Motivating example: $S_{n,k}^{1 \prec n}(1324)$

For $n \ge 2$, there is a bijection between $S_{n,1}^{1 < n}(1324)$ and the set of 1324-avoiding dominoes* with n-2 points.

*D. Bevan, R. Brignall, A. Elvey Price, J. Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, *European J. Combin.* **88** (2020)

Generating function:

$$f(x) = x + 2x^2 + 6x^3 + 22x^4 + 91x^5 + 408x^6 + \cdots$$
 (A000139)

Bijection:

$$\sigma = \sigma_L \ln \sigma_R \quad \mapsto \quad \begin{array}{c} \sigma_R^{-1} \\ \hline \sigma_L^{-1} \end{array}$$

where σ_L and σ_R avoid 132 and 213, respectively.

Main results for 1324

Let

$$T_{a,k}(x) = \sum_{n=k+1}^{\infty} |S_{n,k}^{a \prec n}(1324)| x^n \text{ and } g_a(x,t) = \sum_{k=1}^{\infty} t^k T_{a,k}(x),$$

- $T_{1,k}(x) = xf(x)^k$ and $g_1(x,t) = \frac{xtf(x)}{1 tf(x)}$.
- $T_{2,1}(x) = \frac{1}{2}x^2 \frac{d}{dx} T_{1,1}(x)$ and

$$T_{2,k}(x) = x^2 f(x)^k + k f(x)^{k-1} (T_{2,1}(x) - x^2 f(x)).$$

• $g_2(x,t) = \frac{1}{2} \left(x^2 \frac{\partial g_1}{\partial x}(x,t) - g_1(x,t)^2 \right).$

Conjecture

For $k \ge a$, we have the equivalent formulas:

(i)
$$\sum_{i=0}^{k} (-1)^{j} {k \choose j} f(x)^{j} T_{a,k-j} = 0.$$

(ii)
$$T_{a,k}(x) = \sum_{j=0}^{a-1} {k \choose j} f(x)^{k-j} \sum_{i=0}^{j} (-1)^{i} {j \choose i} f(x)^{i} T_{a,j-i}(x).$$

Conjecture

For $k \ge a$, we have the equivalent formulas:

(i)
$$\sum_{j=0}^{k} (-1)^{j} {k \choose j} f(x)^{j} T_{a,k-j} = 0.$$

(ii)
$$T_{a,k}(x) = \sum_{j=0}^{a-1} {k \choose j} f(x)^{k-j} \sum_{i=0}^{j} (-1)^{i} {j \choose i} f(x)^{i} T_{a,j-i}(x).$$

Why is this relevant?

Conjecture

For $k \ge a$, we have the equivalent formulas:

(i)
$$\sum_{j=0}^{k} (-1)^{j} {k \choose j} f(x)^{j} T_{a,k-j} = 0.$$

(ii)
$$T_{a,k}(x) = \sum_{j=0}^{a-1} {k \choose j} f(x)^{k-j} \sum_{j=0}^{j} (-1)^j {j \choose j} f(x)^j T_{a,j-j}(x).$$

Why is this relevant? If $G(x) = \sum_{n=1}^{\infty} |S_n(1324)| x^n$, then

$$G(x) = \frac{1}{1-x} \left(x + \sum_{a=1}^{\infty} g_a(x,1) \right).$$

Proof of concept: Separable permutations

Let

$$S(x) = 1 + x + 2x^2 + 6x^3 + 22x^4 + 90x^5 + \cdots$$

be the generating function for $|S_n(2413, 3142)|$, and let

$$\mathcal{S}_n^{\ell\mapsto 1}=\{\sigma\in\mathcal{S}_n(2413,3142):\sigma(\ell)=1\}.$$

Proposition

The function
$$g(x, u) = \sum_{n=1}^{\infty} \sum_{\ell=1}^{n} |\mathcal{S}_n^{\ell \mapsto 1}| u^{\ell} x^n$$
 satisfies

$$g(x,u) = \frac{xuS(x)S(xu)}{S(x) + S(xu) - S(x)S(xu)}.$$

Proof

- 1. Indecomposable/decomposable
 - $g(x, u) = (xu + g_i(x, u))S(x)$
 - $g_d(x, u) = (xu + g_i(x, u))(S(x) 1)$

Proof

- 1. Indecomposable/decomposable
 - $g(x, u) = (xu + g_i(x, u))S(x)$
 - $g_d(x, u) = (xu + g_i(x, u))(S(x) 1)$

- 2. Involution from reverse map
 - $g(x, u) = ug(xu, \frac{1}{u})$
 - $g_d(x, u) = ug_i(xu, \frac{1}{u})$ (separable)

Proof

- 1. Indecomposable/decomposable
 - $g(x, u) = (xu + g_i(x, u))S(x)$
 - $g_d(x, u) = (xu + g_i(x, u))(S(x) 1)$

- 2. Involution from reverse map
 - $g(x, u) = ug(xu, \frac{1}{u})$
 - $g_d(x, u) = ug_i(xu, \frac{1}{u})$ (separable)
- 3. Some basic algebra...

$$g(x, u) = ug(xu, \frac{1}{u}) = (xu + ug_i(xu, \frac{1}{u}))S(xu)$$

$$= (xu + g_d(x, u))S(xu)$$

$$= (xu + (xu + g_i(x, u))(S(x) - 1))S(xu)$$

leads to

$$g_i(x,u) = \frac{xuS(x)(S(xu)-1)}{S(x)+S(xu)-S(x)S(xu)}.$$

DISCRETE MATHEMATICS

Discrete Mathematics 146 (1995) 247-262

Generating trees and the Catalan and Schröder numbers

Julian West

Department of Computer Science, Bordeaux University, Bordeaux, France

Received 25 August 1991; revised 28 January 1994

DISCRETE MATHEMATICS

Discrete Mathematics 146 (1995) 247-262

Generating trees and the Catalan and Schröder numbers

Julian West

Department of Computer Science, Bordeaux University, Bordeaux, France

Received 25 August 1991; revised 28 January 1994

:

The data we have examined support the following conjecture.

Conjecture 4.4. Among all the permutations of $S_n(3142, 2413)$, take those in which 1 appears in position j. For each of these, count 1 less than the number of active sites (with respect to 3142 and 2413). Then the total is $s_{j-1} \cdot s_{n-j}$.

Discrete Mathematics 132 (1994) 291-316

Forbidden subsequences

Zvezdelina E. Stankova*

Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010-2899, USA

Received 26 November 1991; revised 17 November 1992

DISCRETE MATHEMATICS

Discrete Mathematics 132 (1994) 291-316

Forbidden subsequences

Zvezdelina E. Stankova*

Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010-2899, USA

Received 26 November 1991; revised 17 November 1992

:

a special case for n = 4. The proof presented by West in [10] gives a description of the tree T(2413, 3142) and uses generating functions. In search of a better proof he made the following conjecture (4.2.1, p. 30): Among all the permutations of length n, take those in which 1 appears in position j. For each of these, count 1 less than the number of active sites (with respect to the forbidden patterns 3142 and 2413). Then the total is $s_j \cdot s_{n-j}$. If this conjecture were true, one could easily prove the Schröder result using the recurrence relationship for the s_n 's. Unfortunately, it is not. Consider, for example,

Bonus

We just proved that

$$g(x,u) = \frac{xuS(x)S(xu)}{S(x) + S(xu) - S(x)S(xu)}.$$

Bonus

We just proved that

$$g(x,u) = \frac{xuS(x)S(xu)}{S(x) + S(xu) - S(x)S(xu)}.$$

If we let u = 1, then

$$S(x) - 1 = \frac{xS(x)S(x)}{S(x) + S(x) - S(x)S(x)} = \frac{xS(x)}{2 - S(x)},$$

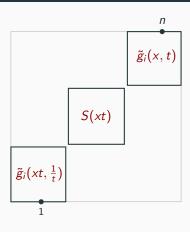
which leads to $S(x) = \frac{1}{2}(3 - x - \sqrt{1 - 6x + x^2})$.

Enumeration by relative position

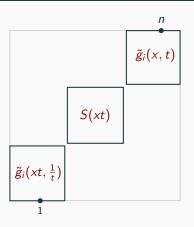
THEOREM

For
$$f(x,t) = \sum_{n,k \ge 1} |S_{n,k}^{1 < n}(2413, 3142)| t^k x^n$$
, we have
$$f(x,t) = \frac{x^2 t S(x) S(xt)^2}{\left(S(xt) + S(x) - S(xt)S(x)\right)^2}.$$

Sketch of proof



Sketch of proof

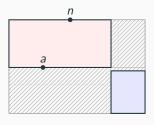


$$f(x,t) = (x + g_i(xt, \frac{1}{t}))S(xt)(xt + g_i(x, t)).$$

$$g_i(x, u) = \frac{xuS(x)(S(xu) - 1)}{S(x) + S(xu) - S(x)S(xu)}$$

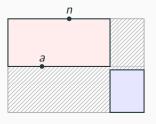
2413-property and corollary

For a>1, any $\sigma\in\mathcal{S}_{n,k}^{a\prec n}(2413)$ must be of the form $\sigma=\pi\ominus\tau$, where $\pi\in\mathcal{S}_{m,k}^{1\prec m}(2413)$ with m=n-a+1, and $\tau\in\mathcal{S}_{a-1}(2413)$.



2413-property and corollary

For a>1, any $\sigma\in\mathcal{S}_{n,k}^{a\prec n}(2413)$ must be of the form $\sigma=\pi\ominus\tau$, where $\pi\in\mathcal{S}_{m,k}^{1\prec m}(2413)$ with m=n-a+1, and $\tau\in\mathcal{S}_{a-1}(2413)$.



If
$$F(x, t, s) = \sum_{n,k,a \ge 1} |S_{n,k}^{a < n}(2413, 3142)| t^k s^a x^n$$
, then
$$F(x, t, s) = f(x, t) \cdot sS(xs).$$

Note that 3142 is skew indecomposable!

 \triangleright Enumeration of $S_n^{a \prec n}(1324)$ for $a \ge 3$

- ▷ Enumeration of $S_n^{a \prec n}(1324)$ for $a \ge 3$
- \triangleright Enumeration of 2413 by the position of the 1

- ightharpoonup Enumeration of $S_n^{a \prec n}(1324)$ for $a \ge 3$
- \triangleright Enumeration of 2413 by the position of the 1
- ▷ Positional statistics for Baxter permutations

- \triangleright Enumeration of $S_n^{a \prec n}(1324)$ for $a \ge 3$
- \triangleright Enumeration of 2413 by the position of the 1
- Positional statistics for Baxter permutations
- Positional statistics for patterns of size 4
- ▶ Positional statistics for pair of patterns of size 4

Thank you!

