Emerging consecutive pattern avoidance Permutation Pattern 2025, Saint Andrews, UK

Nathanaël Hassler joint work with Sergey Kirgizov

July 9, 2025

Let $\pi = a_1 \dots a_n \in S_n$, and $p \in S_3$.

- We say that π contains a consecutive occurrence of the pattern p if there exists a subsequence of consecutive letters a_ia_{i+1}a_{i+2} of π that is order-isomorphic to p.
- We say that π avoids the consecutive pattern p if it does not contain any consecutive occurrence of p.

Example: The permutation 6437215 contains

Let $\pi = a_1 \dots a_n \in S_n$, and $p \in S_3$.

- We say that π contains a consecutive occurrence of the pattern p if there exists a subsequence of consecutive letters a_ia_{i+1}a_{i+2} of π that is order-isomorphic to p.
- We say that π avoids the consecutive pattern p if it does not contain any consecutive occurrence of p.

Example: The permutation <u>6437215</u> contains

• 2 occurrences of 321

Let $\pi = a_1 \dots a_n \in S_n$, and $p \in S_3$.

- We say that π contains a consecutive occurrence of the pattern p if there exists a subsequence of consecutive letters a_ia_{i+1}a_{i+2} of π that is order-isomorphic to p.
- We say that π avoids the consecutive pattern p if it does not contain any consecutive occurrence of p.

Example: The permutation 6437215 contains

- 2 occurrences of 321
- 2 occurrences of 213

Let $\pi = a_1 \dots a_n \in S_n$, and $p \in S_3$.

- We say that π contains a consecutive occurrence of the pattern p if there exists a subsequence of consecutive letters a_ia_{i+1}a_{i+2} of π that is order-isomorphic to p.
- We say that π avoids the consecutive pattern p if it does not contain any consecutive occurrence of p.

Example: The permutation 6437215 contains

- 2 occurrences of 321
- 2 occurrences of 213
- 1 occurrence of 231

3 bijections preserving the occurrences of consecutive patterns:

- The reverse of $\pi = a_1 \dots a_n$ is $R(\pi) = a_n \dots a_1$.
- The complement is $C(\pi) = (n + 1 a_1) \dots (n + 1 a_n)$.
- The reverse-complement $R \circ C$ is the composition of R and C.

Fact

For $T \in \{R, C, R \circ C\}$, $\pi \in S_n$ and a consecutive pattern p, π has an occurrence of p if and only if $T(\pi)$ has an occurrence of T(p).

3 bijections preserving the occurrences of consecutive patterns:

- The reverse of $\pi = a_1 \dots a_n$ is $R(\pi) = a_n \dots a_1$.
- The complement is $C(\pi) = (n + 1 a_1) \dots (n + 1 a_n)$.
- The *reverse-complement* $R \circ C$ is the composition of R and C.

Fact

For $T \in \{R, C, R \circ C\}$, $\pi \in S_n$ and a consecutive pattern p, π has an occurrence of p if and only if $T(\pi)$ has an occurrence of T(p).

There are 18 classes of multi-avoidance of length 3 consecutive patterns under the action of $\{Id, R, C, R \circ C\}$.

Classes of multi-avoidance

Kitaev and Mansour gave the enumeration of all those 18 classes:

- Kitaev, Multi-avoidance of generalised patterns (2003).
- Kitaev and Mansour, *Simultaneous avoidance of generalized patterns* (2005).
- Kitaev and Mansour, *On multi-avoidance of generalized patterns* (2005).

Classes of multi-avoidance

Kitaev and Mansour gave the enumeration of all those 18 classes:

- Kitaev, Multi-avoidance of generalised patterns (2003).
- Kitaev and Mansour, *Simultaneous avoidance of generalized patterns* (2005).
- Kitaev and Mansour, *On multi-avoidance of generalized patterns* (2005).

Question: among a class, what are the asymptotic frequencies of the allowed patterns?

Classes of multi-avoidance

Kitaev and Mansour gave the enumeration of all those 18 classes:

- Kitaev, Multi-avoidance of generalised patterns (2003).
- Kitaev and Mansour, *Simultaneous avoidance of generalized patterns* (2005).
- Kitaev and Mansour, *On multi-avoidance of generalized patterns* (2005).

Question: among a class, what are the asymptotic frequencies of the allowed patterns?

Definition

Let $\mathcal{A}_n := \operatorname{Av}_n(p_1, \ldots, p_m)$. For a pattern $p \notin \{p_1, \ldots, p_m\}$, we denote by $p_n^{\mathcal{A}}$ the total number of occurrences of p in \mathcal{A}_n . We define the *asymptotic popularity* of p in the class \mathcal{A} by

$$\operatorname{pop}_{\mathcal{A}}(\rho) := \lim_{n \to \infty} \frac{\mathsf{p}_n^{\mathcal{A}}}{n|\mathcal{A}_n|}.$$

Lemma - Kitaev (2003)

A permutation $\pi \in Av_n(132, 231)$ has the following form:

$$\pi = a_1 \dots a_k 1 b_1 \dots b_{n-k-1},$$

where $a_1 \dots a_k$ is a decreasing sequence, and $b_1 \dots b_{n-k-1}$ an increasing sequence.

Figure: General structure of a permutation from $Av_n(132, 231)$.

Overview

Pattern	109	190	019	0.9.1	910	201
Class	123	132	213	231	312	321
1 (simple)			1/2	1/2		
2 (simple)				0		1
3 (simple)	1/2					1/2
4 (simple)			N/A		N/A	
5 (simple)	1			0		
6 (simple)				1/2	1/2	
7 (done in $[\star]$)				1/2	1/2	0
8 (simple)			0		0	1
9 (simple)	1/2				0	1/2
10 (open)			?	?		?
11			1/4	1/2	1/4	
12 (open)		?	?			?
13 (open)		?	?		?	?
14 (open)	?	?			?	?
15 (open)	?			?	?	?
16 (simple)		1/4	1/4	1/4	1/4	
17			1/4	1/2	1/4	0
18 (simple)	1/2		0		0	1/2

Figure: The asymptotic popularity of patterns among 18 avoidance classes.

[*] Baril, Burstein and Kirgizov, Pattern statistics in faro words and permutations (2021).

Theorem - Kitaev (2003)

$$|Av_n(123, 132, 321)| = (n-1)!! + (n-2)!!,$$

where n!! is defined by 0!! = 1, and for $n \ge 1$

$$n!! = \begin{cases} n \cdot (n-2) \dots 3 \cdot 1 & \text{if } n \text{ is odd,} \\ n \cdot (n-2) \dots 4 \cdot 2 & \text{if } n \text{ is even.} \end{cases}$$

Avoiding 123,132 and 321

Theorem

3

$$231_n = (n-1)!! \left\lceil \frac{n-3}{2} \right\rceil + (n-2)!! \left\lceil \frac{n-2}{2} \right\rceil,$$

$$12_{n} = (n-1)!! \left(\frac{(-1)^{n-1} + n - 3}{4} + \frac{1}{2} \sum_{\substack{k \neq n \mod 2}}^{n-1} \frac{1}{k} \right) + (n-2)!! \left(\frac{(-1)^{n} + n - 4}{4} + \frac{1}{2} \sum_{\substack{k=n \mod 2}}^{n-2} \frac{1}{k} \right),$$

 $213_n = (n-2)((n-1)!! + (n-2)!!) - 231_n - 312_n.$

Let π be a permutation. We introduce a standard form for writing π :

• Each cycle is written with its least element first.

O The cycles are written in decreasing order of their least element.

The Foata transform $\hat{\pi}$ is the permutation obtained from π by writing it in standard form and by erasing the parentheses separating the cycles.

Example: The involution $\pi = 732458169$ has standard form

 $\pi = (9)(6 \ 8)(5)(4)(2 \ 3)(1 \ 7),$

so $\hat{\pi} = 968542317$.

Theorem - Claesson (2001)

 $\pi\mapsto\hat{\pi}$ induces a bijection between the set of involutions \mathcal{I}_n and $\mathsf{Av}_n(123,132).$

It suffices to count patterns in the involutions!

Pattern in $Av_n(123, 132)$	Pattern in \mathcal{I}_n , with $a < b < c$
321	$(c)(b)(a)$ or $(c)(b)(a \star)$ or $(\star c)(b)(a)$
231	(<i>b c</i>)(<i>a</i>) or (<i>b c</i>)(<i>a</i> *)
213	(<i>b</i>)(<i>a c</i>) or (* <i>b</i>)(<i>a c</i>)
312	(<i>c</i>)(<i>a b</i>) or (* <i>c</i>)(<i>a b</i>)

Table: The correspondence between patterns in Av_n(123, 132) and \mathcal{I}_n .

Lemma

Let fp_n be the total number of fixed points in \mathcal{I}_n . Then

$$\frac{\mathsf{fp}_n}{|\mathcal{I}_n|} \underset{n \to \infty}{\sim} \sqrt{n}.$$

It suffices to count fixed point-free patterns in the involutions!

Fixed point-free patterns in the involutions

Pattern in $Av_n(123, 132)$	Fixed point-free pattern in \mathcal{I}_n			
321	Ø			
231	(b c)(a *)			
213	(* b)(a c)			
312	(* c)(a b)			

Table: The correspondence between fixed point-free patterns in Av_n(123, 132) and \mathcal{I}_n .

Proposition

 $pop_{17}(321) = 0$ and $pop_{17}(231) = 1/2$.

$$213 \longleftrightarrow (\star b)(a c) = (b c)(a d) \longleftrightarrow 2314$$

Proposition

Let
$$G(z) = \sum_{n=4}^{+\infty} \frac{2314_n}{n!} z^n$$
 be the EGF of $(2314_n)_{n \ge 4}$. Then

$$G(z) = \frac{e^{\frac{(1+z)^2}{2}}}{2} \int_0^z e^{-\frac{(1+t)^2}{2}} dt + \frac{z(z-2)e^{z+\frac{z^2}{2}}}{4}.$$

Analysis of G(z)

Corollary

 $pop_{17}(312) = pop_{17}(213) = 1/4.$

Pattern						
Class	123	132	213	231	312	321
1 (simple)			1/2	1/2		
2 (simple)				0		1
3 (simple)	1/2					1/2
4 (simple)			N/A		N/A	
5 (simple)	1			0		
6 (simple)				1/2	1/2	
7 (done in $[\star]$)				1/2	1/2	0
8 (simple)			0		0	1
9 (simple)	1/2				0	1/2
10 (open)			?	?		?
11			1/4	1/2	1/4	
12 (open)		?	?			?
13 (open)		?	?		?	?
14 (open)	?	?			?	?
15 (open)	?			?	?	?
16 (simple)		1/4	1/4	1/4	1/4	
17			1/4	1/2	1/4	0
18 (simple)	1/2		0		0	1/2

Figure: The asymptotic popularity of patterns among 18 avoidance classes.

• Can we solve Classes 10, 12, 13, 14 and 15?

- Can we solve Classes 10, 12, 13, 14 and 15?
- What happens when we avoid only one consecutive pattern of size 3?

- Can we solve Classes 10, 12, 13, 14 and 15?
- What happens when we avoid only one consecutive pattern of size 3?
- Can we find a set of patterns, avoiding which we will obtain an irrational asymptotic popularity for some remaining pattern?

- Can we solve Classes 10, 12, 13, 14 and 15?
- What happens when we avoid only one consecutive pattern of size 3?
- Can we find a set of patterns, avoiding which we will obtain an irrational asymptotic popularity for some remaining pattern?
- Does the asymptotic popularity always exist? If not, can we characterize patterns for which this limit exists?

- Can we solve Classes 10, 12, 13, 14 and 15?
- What happens when we avoid only one consecutive pattern of size 3?
- Can we find a set of patterns, avoiding which we will obtain an irrational asymptotic popularity for some remaining pattern?
- Does the asymptotic popularity always exist? If not, can we characterize patterns for which this limit exists?
- What about the same problem for classical patterns? (*Bóna*, *Homberger*, *Janson*)