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1. Geometric grid classes can be represented’ by WS1S
formulas (Braunfeld 2024).
= Python script to generate the formula.

2. WS1S formulas can be represented by (deterministic) finite
automatons.
= MONA tool.

3. Obtain the generating function counting strings of length k
accepted by a DFA.
= Solve system of linear equations (we use SageMath).

"We need representations to be 1:1 and size preserving.
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Used version of MSO
* Objects: integers 1,...,n.
* 1st order variables.
» 2nd order variables: only unary relations (aka sets).
» We have x € X and x < y but not x + y.

We want
Two linear orders: 1left_of(x,y) and below_of(x,y).
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We want
Two linear orders: 1eft_of(x,y) and below_of(X,y).

* MSO cannot encode arbitrary linear order directly (in a size
preserving way) — there is too many of them.

+ We must choose some small subclass of permutations. . .
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» We fix k — the number of insertion points.

* Inserting at a point inserts before it.

» We insert values from 1 to n.

» Encoding: partition P; for i € {1,... k}.

E.g., for permutation 24513 we get Py = {2,4,5}, P, = {1,3}.
The linear orders:

below_of(X,y)=x<y

x<y ifdi:xe PNy eP;

left _of =
eft_of(x,y) {i<j ifxe PiAyePiandi#j

+ Size preserving but not 1:1.
+ Taking minimal representation helps.

4/10



» Fix amatrix M € {—1,0,1}"*¢:
» —1: decreasing,

* 0: empty,
* 1:increasing.
» We number nonzero entries 1,... k.

» Encoding: partition A; fori € {1,... k}.

« Signs for rows and columns need to be selected so
rici = M; ; for all M; ; # 0.

* below_of and left_of similarto left_of of insertion
encoding but account for signs.

+ Again size preserving but not 1:1.

+ Idea of the fix is the same but much more complicated.

» Worked out by Braunfeld in 2024.
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» Braunfeld’s paper works for geometric grid classes.
+ We implement only acyclic grid classes.
* Why?

+ Existence of cycles requires extra checks — the formula is
bigger.

« Even without them, computation explodes above 5
non-zero entries (partly due to limitations of MONA).

* So it’s planned but low priority. ..
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Generating function

J3

Jio

Wio

2x* — 6x3 +4x2 — X
2x4 — 9x3 4+ 12x2 — 6x + 1

x*—ax® +3x% — x
(1 —x)2(1 — 3x + x2)

(14x5 — 56x* + 71x® — 39x% + 10x — 1)x

(2x2 — 4x +1)(x2 — 3x + 1)(8x — 1)(x — 1)2

(Bx* —13x% 41762 — 7x 4+ 1)x
(2x2 —4x +1)(x2 — 3x + 1)(2x — 1)

(8x5 — ax* — 15x3 + 18x% — 7x + 1)x
(x2 —3x+1)(8x — 1)(2x — 1)(x — 1)

(x5 — 7x* +19x% — 18x% + 7x — 1)x
(x3 — 6x2 +5x — 1)(x2 — 3x + 1)(x — 1) 7/10




Source code
https://github.com/PitelVonSacek/PerMSO

Input file (ex.yaml)
class: [[ 1, 1 1,

[ O, 1 1]
Shell

MONA=ex .mona AUTOMATON=ex.auto EXPAND=30 \
./process.sh < ex.yaml

» Output generating function and its first 30 values.

» Saves MSOL formula to ex.mona and the resulting
automaton to ex.auto.

» The resulting automaton has 13 + 1 states.
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https://github.com/PitelVonSacek/PerMSO
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» Possibly better encoding of grid classes.
* MONA improvements:

* Increase limit on the number of nodes (currently 16M).

+ Experiment with optimizations — notably with the order of
variables.

« Full rewrite easier than hacking MONA code.

* In progress in very early stage.

» Generic basis calculation (so it supports extra conditions).
» Cyclic geometric grid classes.
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