Enumerating Grid Classes Using MSOL

Radek Husek (Czech Technical University)
Joint work with Michal Opler

Graphs

Games
Optimization
Algorithms
Theoretical
Computer Science

Permutation Patterns 2025 July 8, 2025

1. Geometric grid classes can be represented’ by WS1S
formulas (Braunfeld 2024).
= Python script to generate the formula.

2. WS1S formulas can be represented by (deterministic) finite
automatons.
= MONA tool.

3. Obtain the generating function counting strings of length k
accepted by a DFA.
= Solve system of linear equations (we use SageMath).

"We need representations to be 1:1 and size preserving.

110

Used version of MSO
* Objects: integers 1,...,n.
* 1st order variables.
» 2nd order variables: only unary relations (aka sets).
» We have x € X and x < y but not x + y.

We want
Two linear orders: 1left_of(x,y) and below_of(x,y).

2/10

We want
Two linear orders: 1eft_of(x,y) and below_of(X,y).

* MSO cannot encode arbitrary linear order directly (in a size
preserving way) — there is too many of them.

+ We must choose some small subclass of permutations. . .

3/10

» We fix k — the number of insertion points.

* Inserting at a point inserts before it.

» We insert values from 1 to n.

» Encoding: partition P; for i € {1,... k}.

E.g., for permutation 24513 we get Py = {2,4,5}, P, = {1,3}.
The linear orders:

below_of(X,y)=x<y

x<y ifdi:xe PNy eP;

left _of =
eft_of(x,y) {i<j ifxe PiAyePiandi#j

+ Size preserving but not 1:1.
+ Taking minimal representation helps.

4/10

» Fix amatrix M € {—1,0,1}"*¢:
» —1: decreasing,

* 0: empty,
* 1:increasing.
» We number nonzero entries 1,... k.

» Encoding: partition A; fori € {1,... k}.

« Signs for rows and columns need to be selected so
rici = M; ; for all M; ; # 0.

* below_of and left_of similarto left_of of insertion
encoding but account for signs.

+ Again size preserving but not 1:1.

+ Idea of the fix is the same but much more complicated.

» Worked out by Braunfeld in 2024.

5/10

» Braunfeld’s paper works for geometric grid classes.
+ We implement only acyclic grid classes.
* Why?

+ Existence of cycles requires extra checks — the formula is
bigger.

« Even without them, computation explodes above 5
non-zero entries (partly due to limitations of MONA).

* So it’s planned but low priority. ..

6/10

Generating function

J3

Jio

Wio

2x* — 6x3 +4x2 — X
2x4 — 9x3 4+ 12x2 — 6x + 1

x*—ax® +3x% — x
(1 —x)2(1 — 3x + x2)

(14x5 — 56x* + 71x® — 39x% + 10x — 1)x

(2x2 — 4x +1)(x2 — 3x + 1)(8x — 1)(x — 1)2

(Bx* —13x% 41762 — 7x 4+ 1)x
(2x2 —4x +1)(x2 — 3x + 1)(2x — 1)

(8x5 — ax* — 15x3 + 18x% — 7x + 1)x
(x2 —3x+1)(8x — 1)(2x — 1)(x — 1)

(x5 — 7x* +19x% — 18x% + 7x — 1)x
(x3 — 6x2 +5x — 1)(x2 — 3x + 1)(x — 1) 7/10

Source code
https://github.com/PitelVonSacek/PerMSO

Input file (ex.yaml)
class: [[1, 1 1,

[O, 1 1]
Shell

MONA=ex .mona AUTOMATON=ex.auto EXPAND=30 \
./process.sh < ex.yaml

» Output generating function and its first 30 values.

» Saves MSOL formula to ex.mona and the resulting
automaton to ex.auto.

» The resulting automaton has 13 + 1 states.

8/10

https://github.com/PitelVonSacek/PerMSO

0011

0101

9/10

» Possibly better encoding of grid classes.
* MONA improvements:

* Increase limit on the number of nodes (currently 16M).

+ Experiment with optimizations — notably with the order of
variables.

« Full rewrite easier than hacking MONA code.

* In progress in very early stage.

» Generic basis calculation (so it supports extra conditions).
» Cyclic geometric grid classes.

10/10

