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Introduction

We’ll consider posets of combinatorial structures under
substructure orders.
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Well quasi-order

Definition
An antichain is a set {a1, a2, . . . } such that ai ≰ aj if i ̸= j.

Eg. The permutations 1234, 132, 54321 form an antichain.

Definition
A poset is well quasi-ordered (wqo) if it contains no infinite
antichains (or infinite descending sequences).

Eg. The set of increasing permutations is wqo as it forms a
chain

1 ≤ 12 ≤ 123 ≤ . . .

so there are no antichains at all.
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Avoidance sets
We consider subsets of posets, particularly downward closed
subsets, in the form of avoidance sets. These are given by their
forbidden substructures.

Definition
Given (X,≤) and B ⊆ X, the avoidance set of B is

Av(B) = {x ∈ X|b ≰ x ∀b ∈ B}.
Example

Av(21) is given by:

1

12 21

123 132 213 231 312 321

...



Avoidance sets
We consider subsets of posets, particularly downward closed
subsets, in the form of avoidance sets. These are given by their
forbidden substructures.

Definition
Given (X,≤) and B ⊆ X, the avoidance set of B is

Av(B) = {x ∈ X|b ≰ x ∀b ∈ B}.

Example

Av(21) is given by:

1

12 21

123 132 213 231 312 321

...



Avoidance sets
We consider subsets of posets, particularly downward closed
subsets, in the form of avoidance sets. These are given by their
forbidden substructures.

Definition
Given (X,≤) and B ⊆ X, the avoidance set of B is

Av(B) = {x ∈ X|b ≰ x ∀b ∈ B}.
Example

Av(21) is given by:

1

12 21

123 132 213 231 312 321

...



The wqo problem

Avoidance sets give rise to natural decidability questions: given
B finite, we ask about decidability of properties of Av(B).

The wqo problem: For a poset (C,≤), is it decidable,
given B ⊆ C finite, whether Av(B) is wqo?

Note: if (C,≤) is wqo, its avoidance sets are also wqo so the wqo
problem is trivially decidable.
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Why the wqo problem?

Well quasi-order is often taken to be an indicator of the
‘wildness’ of a poset – those which are wqo are comparatively
‘tame’.

For instance, wqo posets are precisely those with countably
many downward closed subsets (ideals) [Huczynska & Ruškuc,
2015].

The wqo problem asks not only whether an individual avoidance
set is ‘tame’ or ‘wild’, but whether there is a clear demarkation
between the ‘tame’ and ‘wild’ avoidance sets [Cherlin, 2011].
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2015].

The wqo problem asks not only whether an individual avoidance
set is ‘tame’ or ‘wild’, but whether there is a clear demarkation
between the ‘tame’ and ‘wild’ avoidance sets [Cherlin, 2011].



Known results and open questions

The wqo problem is decidable for:

▶ Graphs under the subgraph order (Ding, 1992);

▶ Graphs under the graph minor order (trivially decidable)
(Robertson & Seymour, 2004);

▶ Words under the non-consecutive subword order (trivially
decidable) (Higman, 1952);

▶ Words under the consecutive subword order (McDevitt &
Ruškuc, 2021).

The wqo problem is open for:

▶ Graphs under the induced subgraph order;

▶ Tournaments under the subgraph order.
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WQO for permutations

The wqo problem is open for permutations under the
non-consecutive (classical) order.

Progress includes:
▶ WQO is decidable for principal classes;
▶ Classes containing finitely many simple permutations are

wqo (Albert & Atkinson, 2005);
▶ WQO is decidable for grid classes (Murphy & Vatter,

2003);
▶ All geometric grid classes are wqo (Albert et al., 2013).

The wqo problem is decidable for permutations under
the consecutive order (McDevitt & Ruškuc, 2021).
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Consecutive orders - intuition

For permutations, the consecutive order is very natural:

132 ≤ 31254 132 ≰ 13524

For other structures, we will need an additional linear order:
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Consecutive orders - definition

Consecutive orders respect the linear order:

A ≤ B when there is an embedding f : A → B s.t. for some k,
f(1) = k, f(2) = k + 1, f(3) = k + 2, etc.

132 ≤ 31254
1 2 3 1 2 3 4 5

132 ≰ 42513
1 2 3 1 2 3 4 5
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Ideas from graph theory

Definition
If η, π are paths in a finite digraph, then η ≤ π under the
subpath order if and only if η is a subpath of π.

Definition
A cycle in a digraph is an in-out cycle if at least one vertex has
in degree > 1 and at least one vertex has out degree > 1.

Theorem (McDevitt & Ruškuc, 2021)

The set of paths of a finite digraph G under the subpath order is
wqo if and only if G contains no in-out cycles.
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Factor graphs

We can often encode structures in our posets as paths in certain
digraphs.

Consider C = Av(B) and take b to be the maximum size of an
element in B.

The factor graph of C is the digraph ΓC with:

▶ Vertices: structures of size b in Av(B);

▶ Edges: σ → τ iff the last b− 1 points of σ are isomorphic
to the first b− 1 points of τ , or formally, σ↾[2,b]∼= τ↾[1,b−1].

We will have a running example of permutations.
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Factor graphs for permutations

Consider C = Av(B) and take b to be the maximum size of a
permutation in B.

The factor graph of C is the digraph ΓC with:

▶ Vertices: permutations of length b in Av(B);

▶ Edges: σ → τ iff the last b− 1 points of σ are isomorphic
to the first b− 1 points of τ , or formally, σ↾[2,b]∼= τ↾[1,b−1].

Here is the factor graph of Av(213, 231, 312):
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Factor graphs for permutations

Consider C = Av(B) and take b to be the maximum size of a
permutation in B.

The factor graph of C is the digraph ΓC with:

▶ Vertices: permutations of length b in Av(B);

▶ Edges: σ → τ iff the last b− 1 points of σ are isomorphic
to the first b− 1 points of τ , or formally, σ↾[2,b]∼= τ↾[1,b−1].
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Paths can be traced by more than one structure
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A path π in ΓC is associated with the set
Σ(π) = {σ ∈ C |Π(σ) = π} of structures that trace it.

Eg.

Definition
A path π is ambiguous if more than one structure traces it, i.e.
|Σ(π)| > 1.

It turns out that the wqo problem is decidable if all or no paths
in a factor graph are ambiguous.
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Antichains from ambiguous cycles

Lemma
If ΓC contains an ambiguous cycle, C is not wqo.

Lemma
If all paths in ΓC are ambiguous, C is wqo if and only if ΓC

contains no cycles, i.e. C is finite.

Theorem
The wqo problem is decidable for the following structures under
consecutive orders:

1. Graphs;

2. Digraphs;

3. Tournaments;

4. n-ary relations;

5. Collections of n binary relations.
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consecutive orders:

1. Graphs;

2. Digraphs;

3. Tournaments;

4. n-ary relations;

5. Collections of n binary relations.



Antichains from in-out cycles

Lemma: If σ ≤ ρ, then Π(σ) ≤ Π(ρ).

By the contrapositive: if Π(σ) ≰ Π(ρ) then σ ≰ ρ.

Since a digraph contains an in-out cycle iff its paths are not
wqo we have:

Lemma
If ΓC contains an in-out cycle, C is not wqo.

Lemma
If ΓC contains no ambiguous paths, C is wqo if and only if ΓC

contains no in-out cycles, so the wqo problem is decidable.
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Are there other ways to obtain infinite antichains?

We have seen that the wqo problem is decidable for structures
when all or no paths are ambiguous in their factor graphs.

What if some paths are ambiguous, and others are not?

This happens for both permutations and equivalence relations.

We have already seen that in-out cycles and ambiguous cycles
yield infinite antichains. Can infinite antichains arise in other
ways? Yes!
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Permutations - splittable pairs

123 132 321

Consider the paths that start at 132, go to 321, and then wind
round the loop n ≥ 1 times.

We can pick associated permutations for these paths, with the
first entry placed between the last two entries. This gives the
infinite antichain 2431, 25431, 265431, . . .

This is an example of an infinite antichain arising from a
splittable pair.

Theorem: An avoidance set C of permutations is
wqo if and only if ΓC contains no in-out cycles,

ambiguous cycles or splittable pairs. (McDevitt &
Ruškuc, 2021)
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WQO for equivalence relations

Theorem: An avoidance set C of equivalence
relations is wqo if and only if ΓC contains no in-out

cycles or ambiguous cycles.
(VI & N. Ruškuc, 2024)



Limitations of factor graphs

Consider the following factor graph for forests under the
consecutive order:

1 3

2

1 3

2

The path from the left vertex to the right vertex has associated
structure:

1 3

2 4

This is not a forest! So not every path corresponds to a
structure in this avoidance set.
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WQO for forests

For forests, we can modify factor graphs to keep track of:

▶ Connected components of the vertices;

▶ Components containing vertices which cannot be ‘seen’.

Conditions for wqo for forests:

▶ No in-out cycles;

▶ An additional constraint on the nature of points in the
factor graph with more than one connected component.

The wqo problem is decidable for forests under the
consecutive order (VI & N. Ruškuc).
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WQO for forests

For forests, we can modify factor graphs to keep track of:

▶ Connected components of the vertices;

▶ Components containing vertices which cannot be ‘seen’.

Conditions for wqo for forests:

▶ No in-out cycles;

▶ An additional constraint on the nature of points in the
factor graph with more than one connected component.

The wqo problem is decidable for forests under the
consecutive order (VI & N. Ruškuc).
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Comparisons

Structure Conditions on ΓC for wqo

Words no in-out cycles
(McDevitt & Ruškuc, 2021)

Equivalence relations no in-out cycles
no ambiguous cycles

Permutations
(McDevitt & Ruškuc, 2021) no in-out cycles

no ambiguous cycles
Permutations with no splittable pairs
equivalence relations

(ongoing)

Graphs
Digraphs

Tournaments no (ambiguous) cycles
n-ary relations

n binary relations
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Future directions

▶ Investigating the wqo problem for other structures for
which some paths are ambiguous and others are not.

▶ Further investigations into posets where we cannot use
factor graphs so easily.

▶ Is there an overarching picture for consecutive orders
behind these results?

▶ Moving away from consecutive orders, can we answer the
wqo problem for orders ‘between’ consecutive and
non-consecutive orders?

▶ The wqo problem for permutations under the
non-consecutive order remains open.
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Questions

Thank you for listening!


