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Outline of talk

• At PP 2024 I used V-antichains to conjecture a classification of
‘small’ antichains (those with growth rate smaller than
νL ≈ 3.28277.)

• In this talk I will bring the story up-to-date, summarising my
current knowledge about antichains up to growth rate
νc ≈ 3.51205, mentioning in particular the existence of intervals of
antichain growth rates which appear at around 3.5.

• Finally, I will introduce a connection with an open problem
regarding binary factorial languages, which I dub The
Realisability Problem.
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Antichains

What is an antichain?
• An antichain is a collection of permutations, none of which is

contained in any other

• Infinite antichains in particular have strong structural
consequences for the theory of permutation classes. Classes which
contain infinite antichains have various ‘bad’ properties, to such
an extent that we have a name for classes which do not contain
infinite antichains: well-quasi-ordered.

• Despite this, relatively few (genuinely distinct) infinite antichains
of permutations are known, especially at small growth rates.
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The smallest (in the sense of growth rate of its downward-closure)
infinite antichain is the famous antichain of oscillations, which occurs at
growth rate κ ≈ 2.20557:
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The smallest infinite antichain

The smallest (in the sense of growth rate of its downward-closure)
infinite antichain is the famous antichain of oscillations, which occurs at
growth rate κ ≈ 2.20557:

Explains phase-transitions at κ ≈ 2.206 and λ ≈ 2.357 in growth-rate
diagram:

0 1 ϕ 2 κ λ

Kaiser, Klazar, 2003 Vatter, ‘11 Bevan ‘18, Vatter ‘10



Motivation
• Vatter/Bevan construction of permutation classes of every growth

rate after λ ≈ 2.357 feels a bit like a cheat: is there a deeper
structure to the number line after λ that is obscured by the
oscillations?

• Motivates interest in classifying the growth rates of permutation
classes with bounded oscillations. The solid block beginning at λ
will be ‘peeled back’ to reveal further structure underneath, at
least until the appearance of the second infinite antichain.

• This suggests that the key to understanding the deeper structure
of the set of growth rates of permutation classes may be to
understand where infinite antichains appear.

• Infinite antichains are very difficult to find, with relatively few
being known. They seem especially rare for small growth rates
(smaller than about 3.5). Can we classify ‘small’ antichains?
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V-antichains.

• We have a process for turning a binary sequence into an antichain
with relatively small growth rate.

• These V-classes come with an in-built structure theorem which
will make them easy to enumerate, in the sense of determining the
growth rate, as long as we have the recurrent complexity
sequence of the defining binary sequence.

• For every V-class we can construct a corresponding V-antichain,
an infinite antichain appearing at the same growth rate.

• Thus we will end up with a very large example class of antichains,
whose growth rates we can find with relative ease.

• In particular, using binary sequences with low complexity will
allow us to construct infinite antichains with very low growth
rates. We shall use these to conjecture a complete classification of
‘small’ infinite antichains.
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The second-smallest infinite antichain?
We construct a permutation class V and show that an infinite antichain
appears at the same growth rate:

Constructing the permutation class V

Examples:
• 132 ∈ V
• 3241 ∈ V
• 654123 ∈ V
• 12543 /∈ V

The class V consists of all of the permutations that can be found
anywhere inside this (infinite) diagram.
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Counting the class V
Enumerating V

• Every π ∈ V is contained in
this (infinite) diagram

• As soon as we remove an
interior point of a
V-permutation it decomposes
into the ‘sum’ of two
contiguous chunks
(‘⊞-indecomposables’)

• Idea for enumerating V◦:
find g.f. g(z) of contiguous
chunks first (easy), then
‘glue’ these together with the
sequent operator:
f (z) = 1

1−g(z)
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Enumerating V
The Class V

V◦ has generating function

f (z) =
1 − z

1 − 3z − 2z4

Hence V has growth rate
ν ≈ 3.069
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The Antichain V
• We can construct an infinite antichain occuring at the same
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The downward closure of this antichain is sandwiched between the
classes V and V+2, both of which have growth rate ν ≈ 3.069.
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growth rate, ν ≈ 3.069
• Brignall conjectured that this is the second-smallest infinite

antichain at PP 2018

• This is probably true, though proof is still ongoing
• Most importantly for our purposes, we can generalise the

construction of V to generate an antichain for any given binary
sequence...
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Turning a binary sequence into a V-class

We use a binary sequence b ∈ {0, 1}N to generate a V-class:

Example: b = 10100110 = 101001101010011010100110 . . .

• Left step for each 1;
right step for each 0

• Intersperse with up
steps

• The class Vb consists of
all permutations that
can be found
somewhere in this
(infinite) diagram
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Enumerating V-classes

• Same idea as for V : count contiguous chunks
(‘⊞-indecomposables’) and ‘glue together’ with sequent operator.

• A recurrent factor of b is a finite binary word which appears as a
substring in b infinitely-often.

• For a given binary sequence b, let (q(n)) denote the recurrent
complexity sequence: q(n) is the number of recurrent factors of b
of length n.

• The recurrent complexity sequence (q(n)) of b allows us to find
the growth rate of the corresponding V-class.

Precisely: if t(z) = ∑∞
n=1 q(n)zn and q(1) = 2 then the growth rate of Vb

is the reciprocal of the smallest positive real solution of the equation

(1 + z)2t(z2)

z2 − 2 − 2z − q(2)z2 − 2z3 = 1.
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V-antichains

We can now generate an (infinite) antichain which occurs at the same
growth rate as Vb:

This gives us an extraordinarily large class of genuinely distinct infinite
antichains whose growth rates we can find (as long as we can
enumerate the recurrent factors of the defining binary sequence).

In particular, choosing defining binary sequences with low complexity
will generate antichains with low growth rates...



V-antichain Growth Rates

Uncountably-many distinct antichains at 3.28277

Uncountably-many distinct V-antichain growth rates - but still 'sparse'.

An antichain which isn't a V-antichain appears - is it the first one?

Below 3.28277 there are only countably-many V-antichains - possible growth rates fully classified.

After 3.509 the possible growth rates become very dense. For the first time we have intervals in which every number is a V-antichain growth rate. 



Uncountably-many antichain g.r.s in (νL, νL + ε)

Recall that νL ≈ 3.28277. This is the first growth rate at which there are
uncountably many genuinely distinct V-antichains. Let ε > 0:

Uncountably-many growth rates in (νL, νL + ε).

• Consider the following ‘antichain’ in the language of binary
words:

AL = {11, 101, 1001, 10001, 100001, 1000001, . . . }

• Take a subset B ⊆ A and consider the avoidance set Av(B),
consisting of all binary words which do not contain any element
of B as a factor (ie., contiguous subsequence).

• Show that there is an infinite binary sequence b whose set of
recurrent factors is precisely Av(B).

• Enumerate the language Av(B) and substitute generating function
into growth rate operator.
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The Realisability Problem.
We would like to be able to generalise the previous construction to
general antichains. Doing so with ‘denser’ antichains would allow us
to construct longer intervals of (trim) antichain growth rates. But we
run up against the realisability problem:

The Realisability Problem.
• Let {0, 1}∗ denote the set of all finite binary words and let B be a

subset of {0, 1}∗, none of whose elements is a factor (ie.,
contiguous subsequence) of any other.

• We take B to be the antidictionary of a factorial language: Av(B) is
the set of binary words which do not contain any element of B as a
factor.

• Is there an infinite binary sequence b whose set of recurrent
factors is precisely Av(B)?

Ideally we would like an effective decision procedure that answers this
for any given B.
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Partial Results on Realisability.
Suppose B is a set of binary words, none of which is a factor of another.
We say that Av(B) is realisable if there is an infinite binary sequence b
whose set of recurrent factors is Av(B).

Examples:

• Av(11, 101, 1001, 10001, 100001, . . . ) is realisable. Then

bL = 101001000100001000001000000 . . . works.

• Av(11) is realisable: Write Av(11) = {b1, b2, b3, . . . }. Then

b = b10b10b20b10b20b30b1 . . . works.
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We say that Av(B) is realisable if there is an infinite binary sequence b
whose set of recurrent factors is Av(B).

Examples:

• Av(0001) is not realisable: b must contain 000 as a recurrent factor,
but then there is no way to back to a 1 without introducing a copy
of 0001.

• Av(1010, 1011) is not realisable: b must contain 101 as a recurrent
factor but then next letter introduces a copy of either 1010 or 1011.

• Av(0101011, 00) is not realisable: consider right-extensions of
010101...
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Suppose B is a set of binary words, none of which is a factor of another.
We say that Av(B) is realisable if there is an infinite binary sequence b
whose set of recurrent factors is Av(B).

Partial results:
• Singleton antidictionaries: If β is a binary word which is not of

the form 1000 . . . 0, 000 . . . 01, 0111 . . . 1 or 111 . . . 10 then the
language Av({β}) is realisable.

• Enveloped antidictionaries: If every word in B both begins and
ends with a 1 then Av(B) is realisable.

• If B contains a word b and its initial-dual or terminal-dual then
Av(B) is not realisable.

A complete solution to this problem would likely enable us to
construct longer intervals of growth rates of (trim) antichains.
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A Mysterious Fact:
It is certainly not the case that every avoidance set Av(B) of binary
words is realisable. But every unbounded avoidance set Av(B) of
which I am aware has precisely the same enumeration sequence as a
realisable language. Is this a coincidence or a general result? If true it
would allow the construction of wider intervals of trim antichains.



The Realisability Problem.
We would like to be able to generalise the previous construction to
general antichains. Doing so with ‘denser’ antichains would allow us
to construct longer intervals of (trim) antichain growth rates. But we
run up against the realisability problem:

The Realisability Problem.
• Let {0, 1}∗ denote the set of all finite binary words and let B be a

subset of {0, 1}∗, none of whose elements is a factor (ie.,
contiguous subsequence) of any other.

• We take B to be the antidictionary of a factorial language: Av(B) is
the set of binary words which do not contain any element of B as a
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• Is there an infinite binary sequence b whose set of recurrent
factors is precisely Av(B)?

Ideally we would like an effective decision procedure that answers this
for any given B.




