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Permutation π → Simplicial complex Xπ

Structural (pattern) properties of π

↕
Topological properties of Xπ
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Definition

A simplicial complex on the vertex set [n] is a collection X of its subsets
which is closed under inclusion and contains all singletons.

The sets in X are called faces.

A maximal face in X is called a facet.

ϕ
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Geometric view

Facets = 123, 34 Facets = 1234, 15, 25
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Definition

For a permutation π = π1π2 · · ·πn, the simplicial complex Xπ has faces

{i0, i1, . . . , ik}< such that πi0 < πi1 < · · · < πik .

π = 3 2 5 4 1 7 6

137, 246, 56, . . . ∈ Xπ
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Xπ for π = 3254176

Facets correspond to , , , . . .
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Xπ

≃

S1 ∨ S2
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Theorem (Przytycki and Silvero, 2018)

For any permutation π, Xπ is homotopic to a wedge of spheres∗, i.e.,

Xπ ≃ Sk1 ∨ Sk2 ∨ · · · ∨ Skm

∗Actually disjoint union of wedges of spheres. Xσ⊖τ = Xσ ⊔ Xτ .
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History

Independence complexes of circle graphs.
Przytycki and Silvero, 2018

Complexes of injective words.
Chacholski, Levi, and Meshulam, 2020

Topological connectivity of random permutation complexes.
Meshulam and Moyal, 2024
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Graph complexes

Popular topic: Graph G → Simplicial complex XG

4 3 5 1 2 ⇝ 4 2 5

1

3

Xπ is the independence complex of the inversion graph of π.
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Special patterns



Definition

The cross-pattern of dimension k is cpk := ⊕k+121.

cp1 = 2143

cp2 = 214365
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Xcpk ≃ Sk

cp1
Xcp1

≃

S1

cp2

Xcp2

≃

S2
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If Xπ ≃ Sk1 ∨ · · · ∨ Skm , then

π contains the patterns cpk1 , . . . , cpkm .

Theorem

For any k ≥ 1, if π ∈ Av(cpk), then hdim(Xπ) < k.

hdim(Sk1 ∨ · · · ∨ Skm) = max{k1, . . . , km}
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Bad news

The converse is not true.

π = 21435
Xπ

≃ •
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Good news

Theorem

If Xπ ≃ Sk1 ∨ · · · ∨ Skm and π has a ‘certain type’ of occurrence of cpk ,
then k ∈ {k1, . . . , km}.
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Highest hdim

Corollary

For any π ∈ Sn, hdim(Xπ) ≤ ⌊n2⌋ − 1. This upper bound is achieved

only by cp n
2
−1, if n is even and

by precisely n2 − 5
(
n−1
2

)
− 1 permutations, if n is odd.
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Questions and a generalization



Question 1

π = 21435
Xπ

≃ •

For which permutations π is Xπ contractible?
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If π has a strong fixed point, then Xπ ≃ •.

If π ∈ Av(cp1) and Xπ is connected, then Xπ ≃ •.
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π = 214635

Contains cp1
No strong fixed points

Xπ

≃ •

Characterize and count the permutations π for which Xπ ≃ •.
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Question 2

Longest increasing subsequences of π

↕

Facets of largest cardinality in Xπ.

The two extremes:

Unique facet with largest cardinality.

All facets have same cardinality.
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Question 2

Longest increasing subsequences of π

↕

Facets of largest cardinality in Xπ.

The two extremes:

Unique facet with largest cardinality. ULIS problem

All facets have same cardinality.
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Definition

A simplicial complex is pure if all facets have the same cardinality.

Xπ is pure if any increasing subsequence can be extended to an LIS.

Characterize and count the π for which Xπ is pure.
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Questions answered for some classes of permutations.

Permutations avoiding a size 3 pattern, Grassmannian permutations,

Involutions in Av(3412).

Can ask several other questions based on topology of Xπ.

Number of Sk in homotopy type of Xπ, hdim(Xπ), when is Xπ shellable,

vertex-decomposable, etc.
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Generalization

Given a pattern σ and permutation π,

X σ
π := {I | πI avoids σ}.

Xπ corresponds to σ = 21.

For decreasing patterns δ, we have that X δ
π is a wedge of spheres.
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Thank you!

Also someone who couldn’t

think of an end-of-talk joke

We may be stupid,

but we’re not clever.
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