Topology of permutation patterns

Krishna Menon KTH Royal Institute of Technology, Sweden

Permutation Patterns 2025

Ongoing joint work with Priyavrat Deshpande and Anurag Singh

Permutation $\pi \rightarrow$ Simplicial complex X_{π}

Structural (pattern) properties of π \uparrow Topological properties of X_{π}

A simplicial complex on the vertex set [n] is a collection X of its subsets which is closed under inclusion and contains all singletons.

• The sets in X are called faces.

• A maximal face in X is called a facet.

 $\mathsf{Facets} = 123, 34$

 $\mathsf{Facets}=1234, 15, 25$

For a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$, the simplicial complex X_{π} has faces

 $\{i_0, i_1, \ldots, i_k\}_<$ such that $\pi_{i_0} < \pi_{i_1} < \cdots < \pi_{i_k}$.

 $\pi = 3\ 2\ 5\ 4\ 1\ 7\ 6$

For a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$, the simplicial complex X_{π} has faces

 $\{i_0, i_1, \ldots, i_k\}_<$ such that $\pi_{i_0} < \pi_{i_1} < \cdots < \pi_{i_k}$.

 $\pi = 3254176$

For a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$, the simplicial complex X_{π} has faces

 $\{i_0, i_1, \ldots, i_k\}_<$ such that $\pi_{i_0} < \pi_{i_1} < \cdots < \pi_{i_k}$.

 $\pi = 3\ 2\ 5\ 4\ 1\ 7\ 6$

For a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$, the simplicial complex X_{π} has faces

 $\{i_0, i_1, \ldots, i_k\}_<$ such that $\pi_{i_0} < \pi_{i_1} < \cdots < \pi_{i_k}$.

 $\pi = 3\ 2\ 5\ 4\ 1\ 7\ 6$

For a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$, the simplicial complex X_{π} has faces

 $\{i_0, i_1, \ldots, i_k\}_<$ such that $\pi_{i_0} < \pi_{i_1} < \cdots < \pi_{i_k}$.

 $\pi = 3\ 2\ 5\ 4\ 1\ 7\ 6$

 \simeq

 $S^1 \vee S^2$

Theorem (Przytycki and Silvero, 2018)

For any permutation π , X_{π} is homotopic to a wedge of spheres^{*}, i.e.,

$$X_{\pi}\simeq S^{k_1}ee S^{k_2}ee\cdotsee S^{k_m}$$

^{*}Actually disjoint union of wedges of spheres. $X_{\sigma\ominus\tau} = X_{\sigma} \sqcup X_{\tau}$.

• Independence complexes of circle graphs. Przytycki and Silvero, 2018

• Complexes of injective words. Chacholski, Levi, and Meshulam, 2020

• Topological connectivity of random permutation complexes. Meshulam and Moyal, 2024

Popular topic: Graph $G \rightarrow$ Simplicial complex X_G

 X_{π} is the independence complex of the inversion graph of π .

Disclaimer

Priyavrat

____ Topological ____ combinatorists

Anurag

Disclaimer

Priyavrat

_____ Topological _____ combinatorists

Anurag

Humble enumerative

combinatorist

Special patterns

The cross-pattern of dimension k is $cp_k := \bigoplus^{k+1} 21$.

 $cp_2 = 214365$

 $X_{{\operatorname{cp}}_k}\simeq S^k$

 S^2

If $X_{\pi} \simeq S^{k_1} \lor \cdots \lor S^{k_m}$, then

 π contains the patterns $cp_{k_1}, \ldots, cp_{k_m}$.

Theorem

For any $k \ge 1$, if $\pi \in Av(cp_k)$, then $hdim(X_{\pi}) < k$.

$$\operatorname{hdim}(S^{k_1} \vee \cdots \vee S^{k_m}) = \max\{k_1, \ldots, k_m\}$$

So we have good news, and we have bad news. My nana always said, "Bad news first, because the good news is probably a lie." The converse is not true.

Good news

Theorem

If $X_{\pi} \simeq S^{k_1} \lor \cdots \lor S^{k_m}$ and π has a 'certain type' of occurrence of cp_k , then $k \in \{k_1, \ldots, k_m\}$.

Corollary

For any $\pi \in \mathfrak{S}_n$, $\operatorname{hdim}(X_{\pi}) \leq \lfloor \frac{n}{2} \rfloor - 1$. This upper bound is achieved

- only by $cp_{\frac{n}{2}-1}$, if n is even and
- by precisely $n^2 5\left(\frac{n-1}{2}\right) 1$ permutations, if n is odd.

Questions and a generalization

Question 1

For which permutations π is X_{π} contractible?

• If π has a strong fixed point, then $X_{\pi} \simeq \bullet$.

• If $\pi \in Av(cp_1)$ and X_{π} is connected, then $X_{\pi} \simeq \bullet$.

Characterize and count the permutations π for which $X_{\pi} \simeq \bullet$.

Longest increasing subsequences of π \updownarrow Facets of largest cardinality in X_{π} .

The two extremes:

- Unique facet with largest cardinality.
- All facets have same cardinality.

Longest increasing subsequences of π \updownarrow Facets of largest cardinality in X_{π} .

The two extremes:

- Unique facet with largest cardinality. ULIS problem
- All facets have same cardinality.

A simplicial complex is pure if all facets have the same cardinality.

 X_{π} is pure if *any* increasing subsequence can be extended to an LIS.

Characterize and count the π for which X_{π} is pure.

• Questions answered for some classes of permutations.

Permutations avoiding a size 3 pattern, Grassmannian permutations, Involutions in Av(3412).

Can ask several other questions based on topology of X_π.
Number of S^k in homotopy type of X_π, hdim(X_π), when is X_π shellable, vertex-decomposable, etc.

$$X_{\pi}^{\sigma} := \{ \mathtt{I} \mid \pi_{\mathtt{I}} \text{ avoids } \sigma \}.$$

- X_{π} corresponds to $\sigma = 21$.
- For decreasing patterns δ , we have that X_{π}^{δ} is a wedge of spheres.

Thank you!

Also someone who couldn't think of an end-of-talk joke

 W. Chachólski, R. Levi and R. Meshulam, On the topology of complexes of injective words, J. Appl. Comput. Topol. (2020).

• R. Meshulam, O. Moyal, *Topological connectivity of random permutation complexes*, arXiv:2406.19022 (2024).

• J. H. Przytycki and M. Silvero, *Homotopy type of circle graph complexes motivated by extreme Khovanov homology*, J. Algebraic Combin. (2018).