

An Optimal Algorithm for Sorting Pattern-Avoiding Sequences

Michal Opler Czech Technical University in Prague July 7, 2025

Graphs Games Optimization Algorithms Theoretical Computer Science

Co-funded by the European Union

Robotics and Advanced Industrial Production CZ.02.01.01/00/22_008/0004590

- Input: Sequence x_1, x_2, \ldots, x_n (of distinct values).
- Task: Rearrange input to increasing order.
- Access to input is available only through comparing pairs of elements.

- Input: Sequence x_1, x_2, \ldots, x_n (of distinct values).
- Task: Rearrange input to increasing order.
- Access to input is available only through comparing pairs of elements.

Theorem

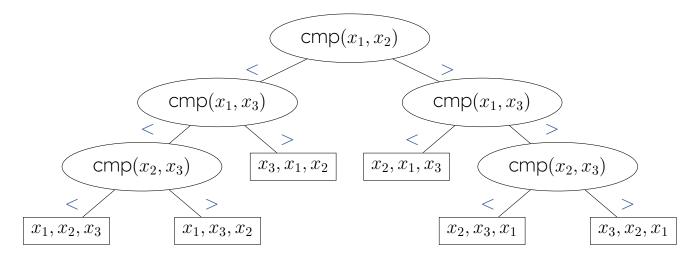
Any deterministic comparison-based sorting algorithm must perform $\Omega(n \log n)$ comparisons in the worst case to sort n elements.

- Input: Sequence x_1, x_2, \ldots, x_n (of distinct values).
- Task: Rearrange input to increasing order.
- Access to input is available only through comparing pairs of elements.

Theorem

Any deterministic comparison-based sorting algorithm must perform $\Omega(n \log n)$ comparisons in the worst case to sort n elements.

Proof sketch:

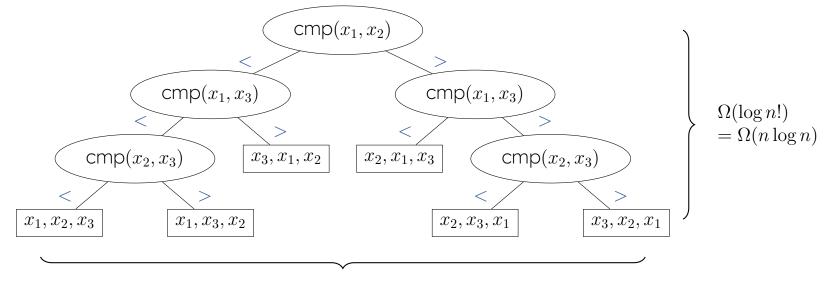


- Input: Sequence x_1, x_2, \ldots, x_n (of distinct values).
- Task: Rearrange input to increasing order.
- Access to input is available only through comparing pairs of elements.

Theorem

Any deterministic comparison-based sorting algorithm must perform $\Omega(n \log n)$ comparisons in the worst case to sort n elements.

Proof sketch:



- A family of inputs Γ of length n cannot be sorted in $o(\log_2 |\Gamma|)$ time.
- When $|\Gamma| \in 2^{\mathcal{O}(n)}$, there is a possibility of sorting in $\mathcal{O}(n)$ time!

- A family of inputs Γ of length n cannot be sorted in $o(\log_2 |\Gamma|)$ time.
- When $|\Gamma| \in 2^{\mathcal{O}(n)}$, there is a possibility of sorting in $\mathcal{O}(n)$ time!

Examples

- Sequences with k runs
 - 1, 4, 6, 9, 2, 5, 7, 3, 8, 10

- A family of inputs Γ of length n cannot be sorted in $o(\log_2 |\Gamma|)$ time.
- When $|\Gamma| \in 2^{\mathcal{O}(n)}$, there is a possibility of sorting in $\mathcal{O}(n)$ time!

Examples

• Sequences with k runs $\mathcal{O}(\log k \cdot n)$

```
1, 4, 6, 9, <mark>2</mark>, 5, 7, 3, 8, 10
```

- A family of inputs Γ of length n cannot be sorted in $o(\log_2 |\Gamma|)$ time.
- When $|\Gamma| \in 2^{\mathcal{O}(n)}$, there is a possibility of sorting in $\mathcal{O}(n)$ time!

Examples

• Sequences with k runs $\mathcal{O}(\log k \cdot n)$

1, 4, 6, 9, <mark>2</mark>, 5, 7, 3, 8, 10

• *k*-increasing sequences

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

- A family of inputs Γ of length n cannot be sorted in $o(\log_2 |\Gamma|)$ time.
- When $|\Gamma| \in 2^{\mathcal{O}(n)}$, there is a possibility of sorting in $\mathcal{O}(n)$ time!

Examples

• Sequences with k runs $\mathcal{O}(\log k \cdot n)$

```
1, 4, 6, 9, 2, 5, 7, 3, 8, 10
```

• *k*-increasing sequences $\mathcal{O}(\log k \cdot n)$

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

- A family of inputs Γ of length n cannot be sorted in $o(\log_2 |\Gamma|)$ time.
- When $|\Gamma| \in 2^{\mathcal{O}(n)}$, there is a possibility of sorting in $\mathcal{O}(n)$ time!

Examples

• Sequences with k runs $\mathcal{O}(\log k \cdot n)$

1, 4, 6, 9, <mark>2</mark>, 5, 7, 3, 8, 10

• *k*-increasing sequences $\mathcal{O}(\log k \cdot n)$

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences

$$\begin{array}{c} 4 \\ 2 \\ 6 \\ 1 \\ 3 \\ 5 \end{array} \rightarrow 4, 2, 1, 3, 6, 8 \end{array}$$

- A family of inputs Γ of length n cannot be sorted in $o(\log_2 |\Gamma|)$ time.
- When $|\Gamma| \in 2^{\mathcal{O}(n)}$, there is a possibility of sorting in $\mathcal{O}(n)$ time!

Examples

• Sequences with k runs $\mathcal{O}(\log k \cdot n)$

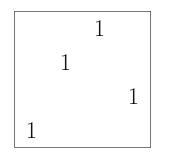
1, 4, 6, 9, <mark>2</mark>, 5, 7, 3, 8, 10

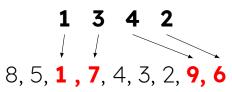
• *k*-increasing sequences $\mathcal{O}(\log k \cdot n)$

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

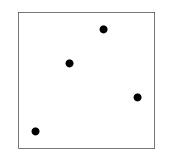
• Preorder (traversal) sequences $\mathcal{O}(n)$

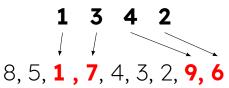
- A permutation π is a sequence π_1, \ldots, π_n of distinct values from $[n] = \{1, \ldots, n\}$.
- We can also represent π as an $n \times n$ 0-1 matrix M_{π} .
- A sequence contains a permutation pattern π if it has a subsequence order-isomorphic to π.
 Otherwise, it avoids π.



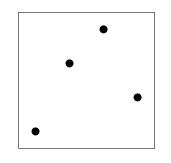


- A permutation π is a sequence π_1, \ldots, π_n of distinct values from $[n] = \{1, \ldots, n\}$.
- We can also represent π as an $n \times n$ 0-1 matrix M_{π} .
- A sequence contains a permutation pattern π if it has a subsequence order-isomorphic to π.
 Otherwise, it avoids π.





- A permutation π is a sequence π_1, \ldots, π_n of distinct values from $[n] = \{1, \ldots, n\}$.
- We can also represent π as an $n \times n$ 0-1 matrix M_{π} .
- A sequence contains a permutation pattern π if it has a subsequence order-isomorphic to π.
 Otherwise, it avoids π.

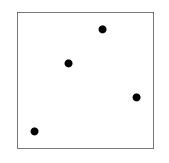


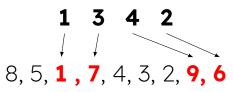


Examples

- k-increasing \leftrightarrow (k + 1, k, ..., 1)-avoiding
- preorder \leftrightarrow stack-sortable \leftrightarrow 231-avoiding [Knuth 1968]

- A permutation π is a sequence π_1, \ldots, π_n of distinct values from $[n] = \{1, \ldots, n\}$.
- We can also represent π as an $n \times n$ 0-1 matrix M_{π} .
- A sequence contains a permutation pattern π if it has a subsequence order-isomorphic to π.
 Otherwise, it avoids π.





Examples

- k-increasing \leftrightarrow (k + 1, k, ..., 1)-avoiding
- preorder \leftrightarrow stack-sortable \leftrightarrow 231-avoiding [Knuth 1968]

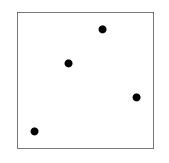
Theorem (Stanley-Wilf conjecture) [Klazar 2000; Marcus, Tardos 2004]

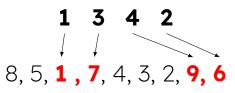
For every pattern π , the number of π -avoiding permutations of length n is $2^{\mathcal{O}_{\pi}(n)}$.

In fact, the limit $s_{\pi} = \lim_{n \to \infty} \sqrt[n]{|\{\sigma \text{ avoids } \pi \mid \sigma \in S_n\}|}$ exists [Arratia 1999]

– Stanley-Wilf limit of π

- A permutation π is a sequence π_1, \ldots, π_n of distinct values from $[n] = \{1, \ldots, n\}$.
- We can also represent π as an $n \times n$ 0-1 matrix M_{π} .
- A sequence contains a permutation pattern π if it has a subsequence order-isomorphic to π.
 Otherwise, it avoids π.





Examples

- k-increasing \leftrightarrow (k + 1, k, ..., 1)-avoiding
- preorder \leftrightarrow stack-sortable \leftrightarrow 231-avoiding [Knuth 1968]

Theorem (Stanley-Wilf conjecture) [Klazar 2000; Marcus, Tardos 2004]

For every pattern π , the number of π -avoiding permutations of length n is $2^{\mathcal{O}_{\pi}(n)}$.

In fact, the limit $s_{\pi} = \lim_{n \to \infty} \sqrt[n]{|\{\sigma \text{ avoids } \pi \mid \sigma \in S_n\}|}$ exists [Arratia 1999]

Stanley-Wilf limit of π

Question: Can π -avoiding sequences be sorted in linear time for arbitrary π ?

Known Results

Can be done "non-uniformly":

Theorem [Fredman 1976]

For any set Γ of permutations of length n, there exists a decision tree of depth $\log_2 |\Gamma| + 2n$ that sorts every input from Γ .

Known Results

Can be done "non-uniformly":

Theorem [Fredman 1976]

For any set Γ of permutations of length n, there exists a decision tree of depth $\log_2 |\Gamma| + 2n$ that sorts every input from Γ .

Pattern-specific approach: exploit the specific structure of π -avoiding permutations for a fixed π

- k-increasing in $\mathcal{O}(\log k \cdot n)$ time
- 231-avoiding in $\mathcal{O}(n)$ time [Knuth 1968]
- 1234-, 1243- and 2143-avoiding in $\mathcal{O}(n)$ time [Arthur 2007]
- 1324-, 1342-, 1423- and 1432-avoiding in $\mathcal{O}(n\log\log\log n)$ time [Arthur 2007]
- no pattern-specific $o(n \log n)$ algorithm known for 2413-avoiding!

Known Results

Can be done "non-uniformly":

Theorem [Fredman 1976]

For any set Γ of permutations of length n, there exists a decision tree of depth $\log_2 |\Gamma| + 2n$ that sorts every input from Γ .

Pattern-specific approach: exploit the specific structure of π -avoiding permutations for a fixed π

- k-increasing in $\mathcal{O}(\log k \cdot n)$ time
- 231-avoiding in $\mathcal{O}(n)$ time [Knuth 1968]
- 1234-, 1243- and 2143-avoiding in $\mathcal{O}(n)$ time [Arthur 2007]
- 1324-, 1342-, 1423- and 1432-avoiding in $\mathcal{O}(n\log\log\log n)$ time [Arthur 2007]
- no pattern-specific $o(n \log n)$ algorithm known for 2413-avoiding!

Pattern-agnostic approach: Use general-purpose sorting algorithm and analyze it on π -avoiding inputs. In particular, insertion sort into self-adjusting BSTs:

- $n 2^{(\alpha(n))^{\mathcal{O}(|\pi|)}}$ time [Chalermsook, Goswami, Kozma, Mehlhorn, Saranurak 2015]
- $n 2^{\mathcal{O}(\alpha(n)+|\pi|^2)}$ time [Chalermsook, Gupta, Jiamjitrak, Acosta, Yingch. 2023]

where $\alpha(\cdot)$ is the inverse-Ackermann function

Main Result

Theorem

There is a comparison-based algorithm that sorts π -avoiding sequences of length n in $\mathcal{O}((\log s_{\pi} + 1) \cdot n)$ time even if π is a priori unknown.

Matches the information-theoretic lower bound!

Overview of the algorithm

Two ingredients:

- (I) Merging $n/\log n$ presorted sequences of length $\log n$ in $\mathcal{O}((\log s_{\pi} + 1) \cdot n)$ time.
- (II) Sorting n/k sequences of length k in $\mathcal{O}((\log s_{\pi} + 1) \cdot n)$ time for any $k \in \mathcal{O}(\log \log \log n)$.

The algorithm

- 1. Cut up the input sequence into parts of length $\log \log \log n$.
- 2. Sort all of them using (II).
- 3. Three layers of bottom-up MergeSort using (I).

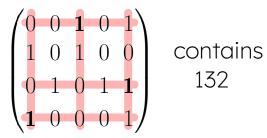
 $\mathcal{O}((\log s_{\pi} + 1) \cdot n)$ $\mathcal{O}((\log s_{\pi} + 1) \cdot n)$

(I) Efficient Merging

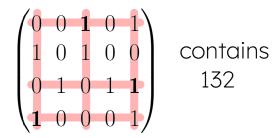
- A 0-1 matrix M contains a pattern π if M_{π} can be obtained from M by removing rows, columns and turning some 1-entries to 0-entries.
- $ex_{\pi}(n) \leftarrow a$ maximum number of 1-entries in a π -avoiding $n \times n$ 0-1 matrix.

 $\begin{pmatrix} 0 & 0 & \mathbf{1} & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & \mathbf{1} \\ \mathbf{1} & 0 & 0 & 0 & 1 \end{pmatrix}$ contains 132

- A 0-1 matrix M contains a pattern π if M_{π} can be obtained from M by removing rows, columns and turning some 1-entries to 0-entries.
- $ex_{\pi}(n) \leftarrow a$ maximum number of 1-entries in a π -avoiding $n \times n$ 0-1 matrix.



- A 0-1 matrix M contains a pattern π if M_{π} can be obtained from M by removing rows, columns and turning some 1-entries to 0-entries.
- $ex_{\pi}(n) \leftarrow a$ maximum number of 1-entries in a π -avoiding $n \times n$ 0-1 matrix.

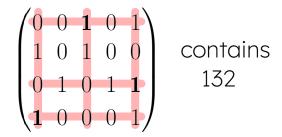


Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

For each π , we have $ex_{\pi} \in \mathcal{O}_{\pi}(n)$.

Moreover, the limit $c_{\pi} = \lim_{n \to \infty} \frac{1}{n} \exp(n)$ exists and $\exp(n) \le c_{\pi} \cdot n$ for all n. [Cibulka 2009]

- A 0-1 matrix M contains a pattern π if M_{π} can be obtained from M by removing rows, columns and turning some 1-entries to 0-entries.
- $ex_{\pi}(n) \leftarrow a$ maximum number of 1-entries in a π -avoiding $n \times n$ 0-1 matrix.



Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

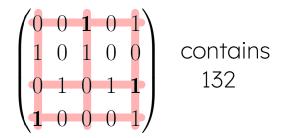
For each π , we have $ex_{\pi} \in \mathcal{O}_{\pi}(n)$.

Moreover, the limit $c_{\pi} = \lim_{n \to \infty} \frac{1}{n} \exp(n)$ exists and $\exp(n) \le c_{\pi} \cdot n$ for all n. [Cibulka 2009] Füredi-Hajnal limit of π

Lemma (The actual hammer)

Every $m \times n$ 0-1 matrix with strictly more than $c_{\pi} \cdot \max(m, n)$ 1-entries contains π .

- A 0-1 matrix M contains a pattern π if M_{π} can be obtained from M by removing rows, columns and turning some 1-entries to 0-entries.
- $ex_{\pi}(n) \leftarrow a$ maximum number of 1-entries in a π -avoiding $n \times n$ 0-1 matrix.



Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

For each π , we have $ex_{\pi} \in \mathcal{O}_{\pi}(n)$.

Moreover, the limit $c_{\pi} = \lim_{n \to \infty} \frac{1}{n} \exp(n)$ exists and $\exp(n) \le c_{\pi} \cdot n$ for all n. [Cibulka 2009] Füredi-Hajnal limit of π

Lemma (The actual hammer)

Every $m \times n$ 0-1 matrix with strictly more than $c_{\pi} \cdot \max(m, n)$ 1-entries contains π .

Additionally, s_{π} and c_{π} are polynomially related – $s_{\pi} \in \Omega(c_{\pi}^{2/9}) \cap \mathcal{O}(c_{\pi}^2)$ [Cibulka 2009] $\Rightarrow \log s_{\pi}$ and $\log c_{\pi}$ are interchangeable within \mathcal{O} -notation.

Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows π and its Füredi-Hajnal limit c_{π} . Let $d \leftarrow \lceil 2c_{\pi} \rceil$, $m \leftarrow n/\log n$

Input: π -avoiding sequence S partitioned into m presorted sequences S_1, \ldots, S_m

- 1. $S'_1, \ldots, S'_{\lfloor m/d \rfloor} \leftarrow$ merge consecutive d-tuples of sequences
- 2. while there are some non-exhausted sequences:
- 3. $S'_{i_1}, \ldots, S'_{i_{d+1}} \leftarrow d+1$ sequences with smallest initial elements
- 4. $x \leftarrow \text{initial element of } S'_{i_{d+1}}$ (largest out of these)
- 5. output merge of $S'_{i_1}, \ldots, S'_{i_d}$ while smaller than x

Round = One execution of the loop (lines 3.-5.)

Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows π and its Füredi-Hajnal limit c_{π} . Let $d \leftarrow \lceil 2c_{\pi} \rceil$, $m \leftarrow n/\log n$

Input: π -avoiding sequence S partitioned into m presorted sequences S_1, \ldots, S_m

- 1. $S'_1, \ldots, S'_{\lfloor m/d \rfloor} \leftarrow$ merge consecutive d-tuples of sequences
- 2. while there are some non-exhausted sequences:
- 3. $S'_{i_1}, \ldots, S'_{i_{d+1}} \leftarrow d+1$ sequences with smallest initial elements
- 4. $x \leftarrow \text{initial element of } S'_{i_{d+1}}$ (largest out of these)
- 5. output merge of $S'_{i_1}, \ldots, S'_{i_d}$ while smaller than x

Round = One execution of the loop (lines 3.-5.)

Implementation:

- "large" heap for storing $S'_1, \ldots, S'_{\lfloor m/d \rfloor}$ where the key of S'_i is its initial element $\circ (d+1) \times \text{ExtractMin in step 3.}$
 - $(d+1) \times \text{Insert after step 5.}$ (returning non-empty sequences back)
- "small" heaps for performing d-way merges in steps 1. and 5.

Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows π and its Füredi-Hajnal limit c_{π} . Let $d \leftarrow \lceil 2c_{\pi} \rceil$, $m \leftarrow n/\log n$

Input: π -avoiding sequence S partitioned into m presorted sequences S_1, \ldots, S_m

- 1. $S'_1, \ldots, S'_{\lfloor m/d \rfloor} \leftarrow \text{merge consecutive } d\text{-tuples of sequences}$ $\mathcal{O}(\log d \cdot n)$
- 2. while there are some non-exhausted sequences:

3. $S'_{i_1}, \ldots, S'_{i_{d+1}} \leftarrow d+1$ sequences with smallest initial elements $\mathcal{O}(d \cdot \log n)$

- 4. $x \leftarrow \text{initial element of } S'_{i_{d+1}}$ (largest out of these)
- 5. output merge of $S'_{i_1}, \ldots, S'_{i_d}$ while smaller than x

Round = One execution of the loop (lines 3.-5.)

Implementation:

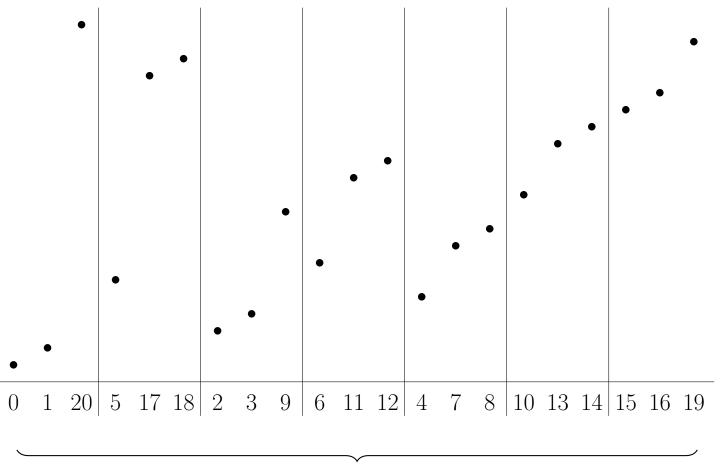
- "large" heap for storing $S'_1, \ldots, S'_{\lfloor m/d \rfloor}$ where the key of S'_i is its initial element $\circ (d+1) \times \text{ExtractMin}$ in step 3.
 - $(d+1) \times \text{Insert after step 5.}$ (returning non-empty sequences back)
- "small" heaps for performing d-way merges in steps 1. and 5.

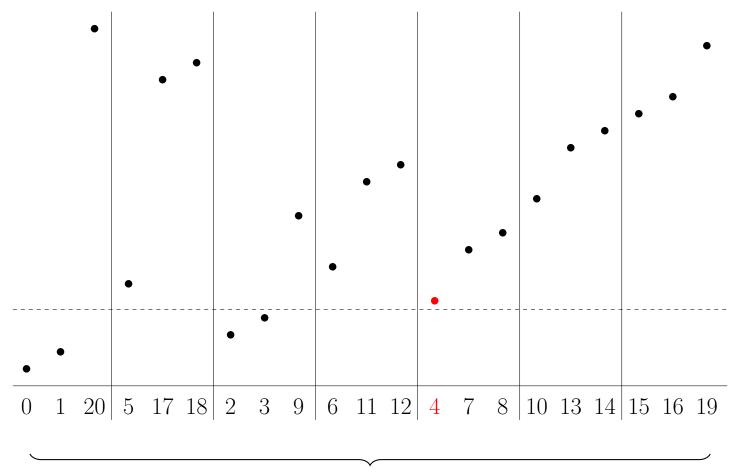
Claim: The algorithm terminates after at most $\frac{m}{d} = \frac{n}{d \log n}$ rounds.

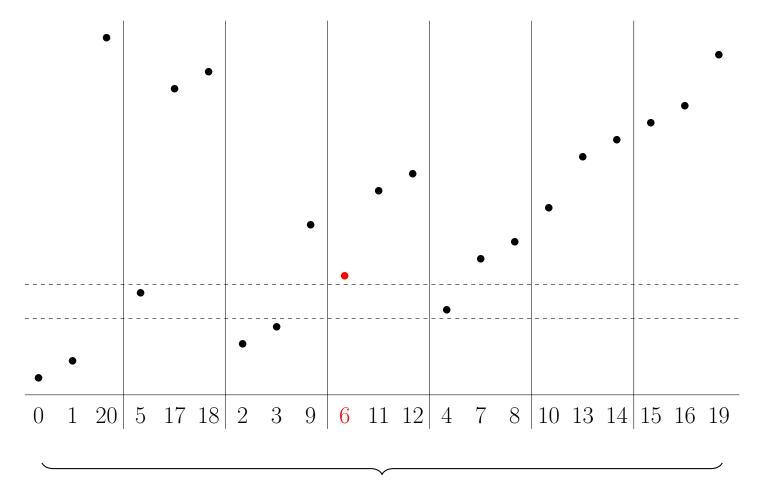
 $\Rightarrow \mathcal{O}(\log d \cdot n)$ runtime.

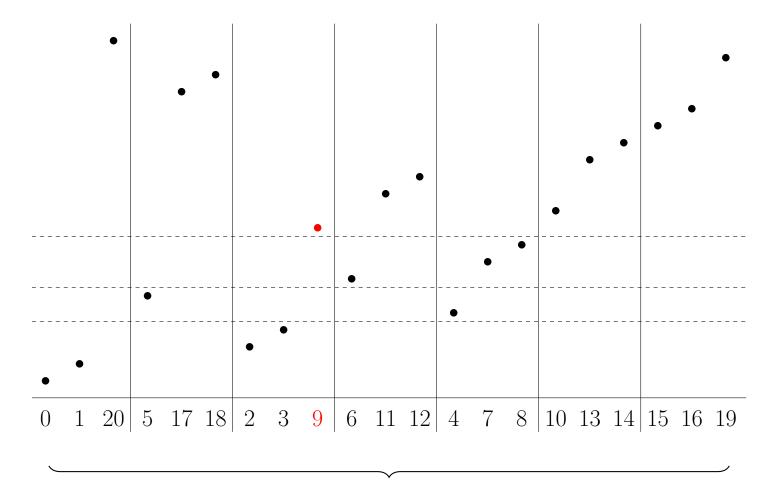
 $\mathcal{O}(\log n)$

 $\mathcal{O}(\log d \cdot n)$ overall

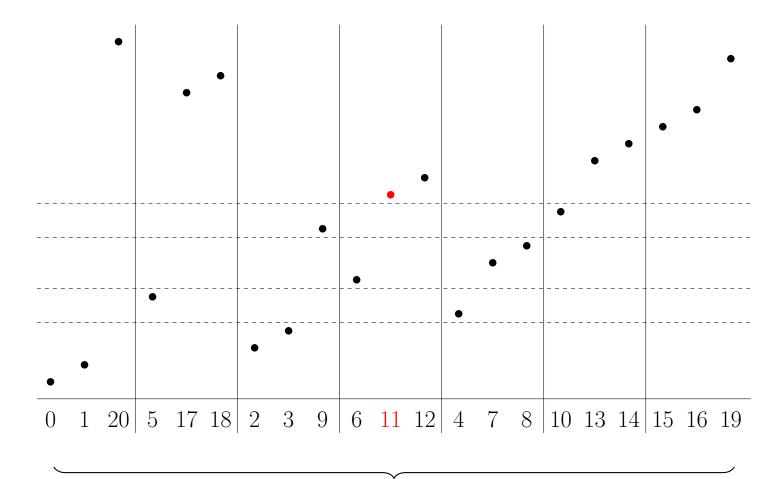




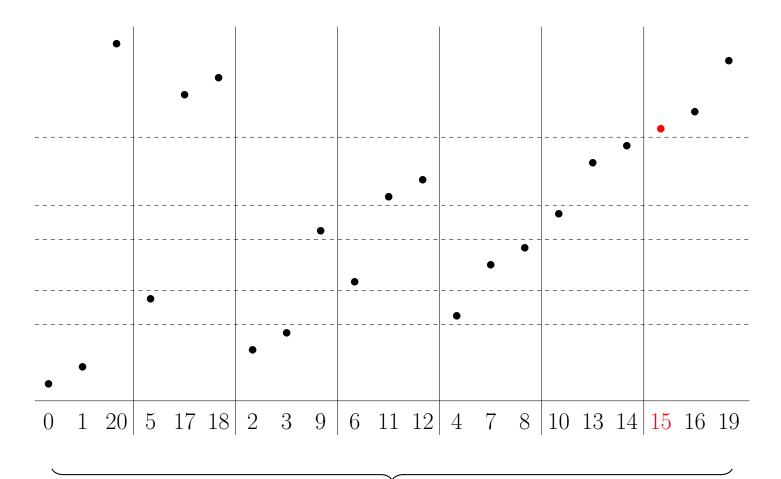




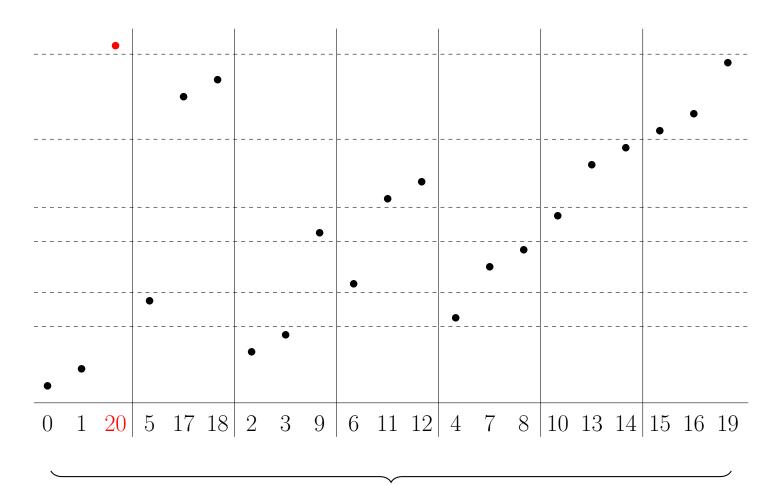
Claim: The algorithm terminates after at most $\frac{m}{d} = \frac{n}{d \log n}$ rounds.



Claim: The algorithm terminates after at most $\frac{m}{d} = \frac{n}{d \log n}$ rounds.

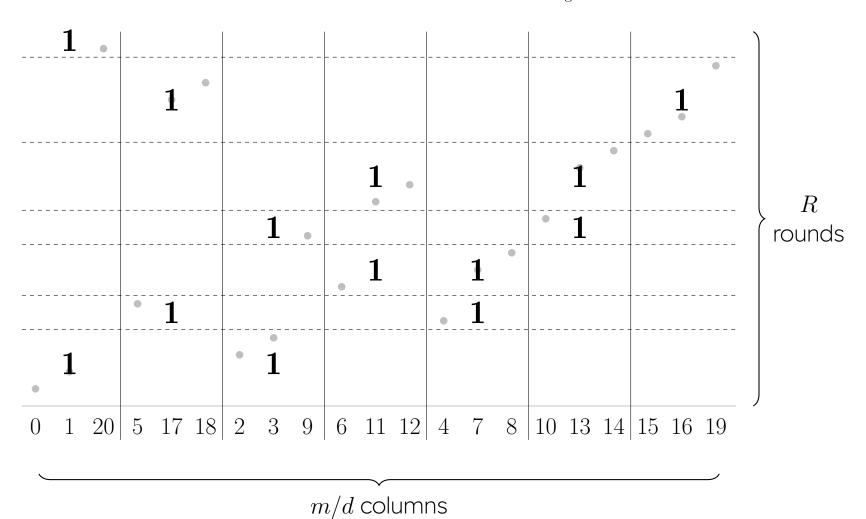


Claim: The algorithm terminates after at most $\frac{m}{d} = \frac{n}{d \log n}$ rounds.





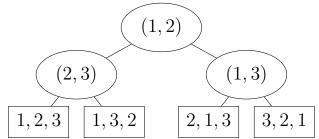




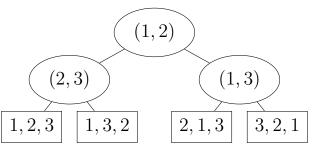
• Assume for a contradiction that R > m/d.

• # 1-entries $\geq d \cdot (R-1) \geq 2c_{\pi} \cdot (R-1) \geq c_{\pi} \cdot R = c_{\pi} \cdot \max(m/d, R)$ \Rightarrow the matrix contains $\pi \Rightarrow$ the input sequence S contains π . (II) Sorting Many Short Sequences

• A decision tree T for input length k is a full binary tree with internal nodes labeled by elements of $[k]^2$ and leaves labeled by permutations of length k.



• A decision tree T for input length k is a full binary tree with internal nodes labeled by elements of $[k]^2$ and leaves labeled by permutations of length k.

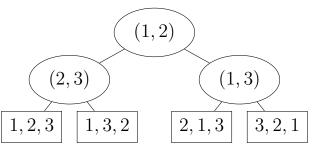


Lemma

There are at most $2^{2^{h+o(k)+o(h)}}$ decision trees of height at most h for input length k.

In our case $k = \log \log \log n$ and thus, there are o(n) trees to consider.

• A decision tree T for input length k is a full binary tree with internal nodes labeled by elements of $[k]^2$ and leaves labeled by permutations of length k.



Lemma

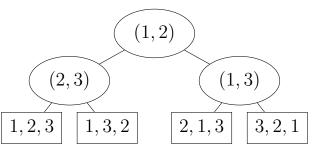
There are at most $2^{2^{h+o(k)+o(h)}}$ decision trees of height at most h for input length k.

In our case $k = \log \log \log n$ and thus, there are o(n) trees to consider.

Theorem [Fredman 1976] [Marcus, Tardos 2004]

For every pattern π , there exists a decision tree of depth $\mathcal{O}((\log s_{\pi} + 1) \cdot k)$ that sorts every π -avoiding permutation of length k.

• A decision tree T for input length k is a full binary tree with internal nodes labeled by elements of $[k]^2$ and leaves labeled by permutations of length k.



o(n)

 $\mathcal{O}((\log s_{\pi}+1)\cdot k\cdot \frac{n}{k})$

Lemma

There are at most $2^{2^{h+o(k)+o(h)}}$ decision trees of height at most h for input length k.

In our case $k = \log \log \log n$ and thus, there are o(n) trees to consider.

Theorem [Fredman 1976] [Marcus, Tardos 2004]

For every pattern π , there exists a decision tree of depth $\mathcal{O}((\log s_{\pi} + 1) \cdot k)$ that sorts every π -avoiding permutation of length k.

What if the algorithm knows π ?

- 1. $P \leftarrow \text{generate all } \pi\text{-avoiding permutations of length } k$
- 2. for every decision tree T of depth at most $\mathcal{O}((\log s_{\pi} + 1) \cdot k)$:
- 3. If T sorts every permutation from P:
- 4. $T_{opt} \leftarrow T$ and break
- 5. sort every sequence on input using T_{opt} .

Conclusion

Theorem

There is a comparison-based algorithm that sorts π -avoiding sequences of length n in $\mathcal{O}((\log s_{\pi} + 1) \cdot n)$ time even if π is a priori unknown.

Matches the information-theoretic lower bound!

Questions:

- Can we sort π -avoiding sequences with
 - $(\log_2 s_{\pi} + \mathcal{O}(1)) \cdot n$ comparisons, or even
 - $(\log_2 s_{\pi} + o(1)) \cdot n$ comparisons?
- Are there other problems where we can exploit pattern-avoidance algorithmically?

Conclusion

Theorem

There is a comparison-based algorithm that sorts π -avoiding sequences of length n in $\mathcal{O}((\log s_{\pi} + 1) \cdot n)$ time even if π is a priori unknown.

Matches the information-theoretic lower bound!

Questions:

- Can we sort π -avoiding sequences with
 - $(\log_2 s_{\pi} + \mathcal{O}(1)) \cdot n$ comparisons, or even
 - $(\log_2 s_{\pi} + o(1)) \cdot n$ comparisons?
- Are there other problems where we can exploit pattern-avoidance algorithmically?

Step I without Prior Knowledge of π

Input: π -avoiding sequence S partitioned into m presorted sequences S_1, \ldots, S_m

 $\mathcal{O}(n)$

 $\mathcal{O}(\log d_{max} \cdot n)$ overall

- 1. $d \leftarrow 1$
- 2. while there are some elements remaining:

3.
$$S_1, \ldots, S_{\lfloor m/2 \rfloor} \leftarrow$$
 merge consecutive pairs of sequences

4.
$$d \leftarrow 2 \cdot d, \quad m \leftarrow \lfloor m/2 \rfloor$$

- 5. repeat m times or until all sequences are exhausted:
- 6. $S_{i_1}, \ldots, S_{i_{d+1}} \leftarrow d+1$ sequences with smallest initial elements
- 7. $x \leftarrow \text{initial element of } S_{i_{d+1}} \text{ (largest out of these)}$
- 8. output merge S_{i_1}, \ldots, S_{i_d} while smaller than x

Phase = One execution of the outer loop (lines 2.-8.)

Step I without Prior Knowledge of π

Input: π -avoiding sequence S partitioned into m presorted sequences S_1, \ldots, S_m

 $\mathcal{O}(n)$

 $\mathcal{O}(n)$

 $\mathcal{O}(\log d_{max} \cdot n)$ overall

- 1. $d \leftarrow 1$
- 2. while there are some elements remaining:

3.
$$S_1, \ldots, S_{\lfloor m/2 \rfloor} \leftarrow$$
 merge consecutive pairs of sequences

4.
$$d \leftarrow 2 \cdot d$$
, $m \leftarrow \lfloor m/2 \rfloor$

- 5. repeat m times or until all sequences are exhausted:
- 6. $S_{i_1}, \ldots, S_{i_{d+1}} \leftarrow d+1$ sequences with smallest initial elements
- 7. $x \leftarrow \text{initial element of } S_{i_{d+1}} \text{ (largest out of these)}$
- 8. output merge S_{i_1}, \ldots, S_{i_d} while smaller than x

Phase = One execution of the outer loop (lines 2.-8.)

Claim: The algorithm terminates after at most $\lceil \log c_{\pi} \rceil + 1$ phases. **Proof:**

- Let d_i and m_i be values of d and m in the i^{th} phase.
- Observe that $d_i = 2^i$ and $m_i \leq \frac{n}{d_i \log n}$
- Assume that the algorithm reaches the phase $\lceil \log c_{\pi} \rceil + 1$.
- For $i = \lceil \log c_{\pi} \rceil + 1$, we have $d_i \ge 2c_{\pi}$ and the same argument as before shows that m_i rounds must suffice to finish merging all elements.

Step II without Prior Knowledge of π

Fix an enumeration of decision trees in the increasing order by their depth.

Input: sequences $S_1, \ldots, S_{n/k}$, each of length k

- 1. $T \leftarrow$ first decision tree in the enumeration sequence
- 2. for $i \in \{1, ..., n/k\}$:
- 3. $S'_i \leftarrow \text{rearrange } S_i \text{ using } T$
- 4. while S'_i is not sorted:
- 5. $T \leftarrow$ next decision tree in the enumeration sequence
- 6. $S'_i \leftarrow \text{rearrange } S_i \text{ using } T$
- 7. output S'_i

Step II without Prior Knowledge of π

Fix an enumeration of decision trees in the increasing order by their depth.

Input: sequences $S_1, \ldots, S_{n/k}$, each of length k

- 1. $T \leftarrow$ first decision tree in the enumeration sequence
- 2. for $i \in \{1, ..., n/k\}$:
- 3. $S'_i \leftarrow \text{rearrange } S_i \text{ using } T$
- 4. while S'_i is not sorted:
- 5. $T \leftarrow$ next decision tree in the enumeration sequence
- 6. $S'_i \leftarrow \text{rearrange } S_i \text{ using } T$
- 7. output S'_i

Observation: The depth of the decision tree never exceeds $\mathcal{O}((\log s_{\pi} + 1) \cdot k)$.

We distinguish successful and unsuccessful applications of T on S_i (lines 3. and 6.).

Claim: In total, there are exactly n/k successful and o(n) unsuccessful applications. **Proof:**

- The sequence S_i is sorted after a successful application of $T \Rightarrow 1$ per sequence.
- Each unsuccessful application causes an advance in the enumeration of decision trees \Rightarrow 1 per decision tree, o(n) in total.