
Co-funded by

the European Union

Robotics and Advanced Industrial Production
CZ.02.01.01/00/22_008/0004590

Graphs
Games
Optimization
Algorithms
Theoretical
Computer Science

An Optimal Algorithm for Sorting
Pattern-Avoiding Sequences

Michal Opler
Czech Technical University in Prague

July 7, 2025

Comparison-Based Sorting
• Input: Sequence x1, x2, . . . , xn (of distinct values).
• Task: Rearrange input to increasing order.
• Access to input is available only through comparing pairs of elements.

Theorem
Any deterministic comparison-based sorting algorithm must perform Ω(n logn)
comparisons in the worst case to sort n elements.

Proof sketch:

cmp(x1, x2)

cmp(x1, x3)

<

cmp(x2, x3)

<

x1, x2, x3

<

x1, x3, x2

>

x3, x1, x2

>

cmp(x1, x3)

>

x2, x1, x3

<

cmp(x2, x3)

>

x2, x3, x1

<

x3, x2, x1

>

≥ n! leaves

Ω(logn!)
= Ω(n logn)

Comparison-Based Sorting
• Input: Sequence x1, x2, . . . , xn (of distinct values).
• Task: Rearrange input to increasing order.
• Access to input is available only through comparing pairs of elements.

Theorem
Any deterministic comparison-based sorting algorithm must perform Ω(n logn)
comparisons in the worst case to sort n elements.

Proof sketch:

cmp(x1, x2)

cmp(x1, x3)

<

cmp(x2, x3)

<

x1, x2, x3

<

x1, x3, x2

>

x3, x1, x2

>

cmp(x1, x3)

>

x2, x1, x3

<

cmp(x2, x3)

>

x2, x3, x1

<

x3, x2, x1

>

≥ n! leaves

Ω(logn!)
= Ω(n logn)

Comparison-Based Sorting
• Input: Sequence x1, x2, . . . , xn (of distinct values).
• Task: Rearrange input to increasing order.
• Access to input is available only through comparing pairs of elements.

Theorem
Any deterministic comparison-based sorting algorithm must perform Ω(n logn)
comparisons in the worst case to sort n elements.

Proof sketch:

cmp(x1, x2)

cmp(x1, x3)

<

cmp(x2, x3)

<

x1, x2, x3

<

x1, x3, x2

>

x3, x1, x2

>

cmp(x1, x3)

>

x2, x1, x3

<

cmp(x2, x3)

>

x2, x3, x1

<

x3, x2, x1

>

≥ n! leaves

Ω(logn!)
= Ω(n logn)

Comparison-Based Sorting
• Input: Sequence x1, x2, . . . , xn (of distinct values).
• Task: Rearrange input to increasing order.
• Access to input is available only through comparing pairs of elements.

Theorem
Any deterministic comparison-based sorting algorithm must perform Ω(n logn)
comparisons in the worst case to sort n elements.

Proof sketch:

cmp(x1, x2)

cmp(x1, x3)

<

cmp(x2, x3)

<

x1, x2, x3

<

x1, x3, x2

>

x3, x1, x2

>

cmp(x1, x3)

>

x2, x1, x3

<

cmp(x2, x3)

>

x2, x3, x1

<

x3, x2, x1

>

≥ n! leaves

Ω(logn!)
= Ω(n logn)

Restricted Inputs
• A family of inputs Γ of length n cannot be sorted in o(log2 |Γ |) time.
• When |Γ | ∈ 2O(n), there is a possibility of sorting in O(n) time!

Examples

• Sequences with k runs

O(log k · n)

1, 4, 6, 9, 2, 5, 7, 3, 8, 10

• k-increasing sequences

O(log k · n)

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences

O(n)

4

2

1 3

6

5

→ 4, 2, 1, 3, 6, 5

Restricted Inputs
• A family of inputs Γ of length n cannot be sorted in o(log2 |Γ |) time.
• When |Γ | ∈ 2O(n), there is a possibility of sorting in O(n) time!

Examples

• Sequences with k runs

O(log k · n)

1, 4, 6, 9, 2, 5, 7, 3, 8, 10

• k-increasing sequences

O(log k · n)

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences

O(n)

4

2

1 3

6

5

→ 4, 2, 1, 3, 6, 5

Restricted Inputs
• A family of inputs Γ of length n cannot be sorted in o(log2 |Γ |) time.
• When |Γ | ∈ 2O(n), there is a possibility of sorting in O(n) time!

Examples

• Sequences with k runs O(log k · n)

1, 4, 6, 9, 2, 5, 7, 3, 8, 10

• k-increasing sequences

O(log k · n)

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences

O(n)

4

2

1 3

6

5

→ 4, 2, 1, 3, 6, 5

Restricted Inputs
• A family of inputs Γ of length n cannot be sorted in o(log2 |Γ |) time.
• When |Γ | ∈ 2O(n), there is a possibility of sorting in O(n) time!

Examples

• Sequences with k runs O(log k · n)

1, 4, 6, 9, 2, 5, 7, 3, 8, 10

• k-increasing sequences

O(log k · n)

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences

O(n)

4

2

1 3

6

5

→ 4, 2, 1, 3, 6, 5

Restricted Inputs
• A family of inputs Γ of length n cannot be sorted in o(log2 |Γ |) time.
• When |Γ | ∈ 2O(n), there is a possibility of sorting in O(n) time!

Examples

• Sequences with k runs O(log k · n)

1, 4, 6, 9, 2, 5, 7, 3, 8, 10

• k-increasing sequences O(log k · n)

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences

O(n)

4

2

1 3

6

5

→ 4, 2, 1, 3, 6, 5

Restricted Inputs
• A family of inputs Γ of length n cannot be sorted in o(log2 |Γ |) time.
• When |Γ | ∈ 2O(n), there is a possibility of sorting in O(n) time!

Examples

• Sequences with k runs O(log k · n)

1, 4, 6, 9, 2, 5, 7, 3, 8, 10

• k-increasing sequences O(log k · n)

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences

O(n)

4

2

1 3

6

5

→ 4, 2, 1, 3, 6, 5

Restricted Inputs
• A family of inputs Γ of length n cannot be sorted in o(log2 |Γ |) time.
• When |Γ | ∈ 2O(n), there is a possibility of sorting in O(n) time!

Examples

• Sequences with k runs O(log k · n)

1, 4, 6, 9, 2, 5, 7, 3, 8, 10

• k-increasing sequences O(log k · n)

1, 4, 2, 3, 6, 5, 8, 10, 9, 7

• Preorder (traversal) sequences O(n)

4

2

1 3

6

5

→ 4, 2, 1, 3, 6, 5

Pattern-Avoiding Inputs
• A permutation π is a sequence π1, . . . , πn of
distinct values from [n] = {1, . . . , n}.
• We can also represent π as an n×n 0-1 matrixMπ.
• A sequence contains a permutation pattern π if it
has a subsequence order-isomorphic to π.
Otherwise, it avoids π.

1

1

1

1

1 3 4 2

8, 5, 1 , 7, 4, 3, 2, 9, 6

Examples

• k-increasing↔ (k + 1, k, . . . , 1)-avoiding
• preorder↔ stack-sortable↔ 231-avoiding [Knuth 1968]

Theorem (Stanley-Wilf conjecture) [Klazar 2000; Marcus, Tardos 2004]

For every pattern π, the number of π-avoiding permutations of length n is 2Oπ(n).

In fact, the limit sπ = limn→∞
n
√
|{σ avoids π | σ ∈ Sn}| exists [Arratia 1999]

Stanley-Wilf limit of π

Question: Can π-avoiding sequences be sorted in linear time for arbitrary π?

Pattern-Avoiding Inputs
• A permutation π is a sequence π1, . . . , πn of
distinct values from [n] = {1, . . . , n}.
• We can also represent π as an n×n 0-1 matrixMπ.
• A sequence contains a permutation pattern π if it
has a subsequence order-isomorphic to π.
Otherwise, it avoids π.

1 3 4 2

8, 5, 1 , 7, 4, 3, 2, 9, 6

Examples

• k-increasing↔ (k + 1, k, . . . , 1)-avoiding
• preorder↔ stack-sortable↔ 231-avoiding [Knuth 1968]

Theorem (Stanley-Wilf conjecture) [Klazar 2000; Marcus, Tardos 2004]

For every pattern π, the number of π-avoiding permutations of length n is 2Oπ(n).

In fact, the limit sπ = limn→∞
n
√
|{σ avoids π | σ ∈ Sn}| exists [Arratia 1999]

Stanley-Wilf limit of π

Question: Can π-avoiding sequences be sorted in linear time for arbitrary π?

Pattern-Avoiding Inputs
• A permutation π is a sequence π1, . . . , πn of
distinct values from [n] = {1, . . . , n}.
• We can also represent π as an n×n 0-1 matrixMπ.
• A sequence contains a permutation pattern π if it
has a subsequence order-isomorphic to π.
Otherwise, it avoids π.

1 3 4 2

8, 5, 1 , 7, 4, 3, 2, 9, 6

Examples

• k-increasing↔ (k + 1, k, . . . , 1)-avoiding
• preorder↔ stack-sortable↔ 231-avoiding [Knuth 1968]

Theorem (Stanley-Wilf conjecture) [Klazar 2000; Marcus, Tardos 2004]

For every pattern π, the number of π-avoiding permutations of length n is 2Oπ(n).

In fact, the limit sπ = limn→∞
n
√
|{σ avoids π | σ ∈ Sn}| exists [Arratia 1999]

Stanley-Wilf limit of π

Question: Can π-avoiding sequences be sorted in linear time for arbitrary π?

Pattern-Avoiding Inputs
• A permutation π is a sequence π1, . . . , πn of
distinct values from [n] = {1, . . . , n}.
• We can also represent π as an n×n 0-1 matrixMπ.
• A sequence contains a permutation pattern π if it
has a subsequence order-isomorphic to π.
Otherwise, it avoids π.

1 3 4 2

8, 5, 1 , 7, 4, 3, 2, 9, 6

Examples

• k-increasing↔ (k + 1, k, . . . , 1)-avoiding
• preorder↔ stack-sortable↔ 231-avoiding [Knuth 1968]

Theorem (Stanley-Wilf conjecture) [Klazar 2000; Marcus, Tardos 2004]

For every pattern π, the number of π-avoiding permutations of length n is 2Oπ(n).

In fact, the limit sπ = limn→∞
n
√
|{σ avoids π | σ ∈ Sn}| exists [Arratia 1999]

Stanley-Wilf limit of π

Question: Can π-avoiding sequences be sorted in linear time for arbitrary π?

Pattern-Avoiding Inputs
• A permutation π is a sequence π1, . . . , πn of
distinct values from [n] = {1, . . . , n}.
• We can also represent π as an n×n 0-1 matrixMπ.
• A sequence contains a permutation pattern π if it
has a subsequence order-isomorphic to π.
Otherwise, it avoids π.

1 3 4 2

8, 5, 1 , 7, 4, 3, 2, 9, 6

Examples

• k-increasing↔ (k + 1, k, . . . , 1)-avoiding
• preorder↔ stack-sortable↔ 231-avoiding [Knuth 1968]

Theorem (Stanley-Wilf conjecture) [Klazar 2000; Marcus, Tardos 2004]

For every pattern π, the number of π-avoiding permutations of length n is 2Oπ(n).

In fact, the limit sπ = limn→∞
n
√
|{σ avoids π | σ ∈ Sn}| exists [Arratia 1999]

Stanley-Wilf limit of π

Question: Can π-avoiding sequences be sorted in linear time for arbitrary π?

Known Results
Can be done “non-uniformly”:

Theorem [Fredman 1976]

For any set Γ of permutations of length n, there exists a decision tree of depth
log2 |Γ | + 2n that sorts every input from Γ .

Pattern-specific approach: exploit the specific structure of π-avoiding
permutations for a fixed π

• k-increasing in O(log k · n) time
• 231-avoiding in O(n) time [Knuth 1968]

• 1234-, 1243- and 2143-avoiding in O(n) time [Arthur 2007]

• 1324-, 1342-, 1423- and 1432-avoiding in O(n log log logn) time [Arthur 2007]

• no pattern-specific o(n logn) algorithm known for 2413-avoiding!

Pattern-agnostic approach: Use general-purpose sorting algorithm and analyze it
on π-avoiding inputs. In particular, insertion sort into self-adjusting BSTs:
• n 2(α(n))

O(|π|) time [Chalermsook, Goswami, Kozma, Mehlhorn, Saranurak 2015]

• n 2O(α(n)+|π|
2) time [Chalermsook, Gupta, Jiamjitrak, Acosta, Yingch. 2023]

where α(·) is the inverse-Ackermann function

Known Results
Can be done “non-uniformly”:

Theorem [Fredman 1976]

For any set Γ of permutations of length n, there exists a decision tree of depth
log2 |Γ | + 2n that sorts every input from Γ .

Pattern-specific approach: exploit the specific structure of π-avoiding
permutations for a fixed π

• k-increasing in O(log k · n) time
• 231-avoiding in O(n) time [Knuth 1968]

• 1234-, 1243- and 2143-avoiding in O(n) time [Arthur 2007]

• 1324-, 1342-, 1423- and 1432-avoiding in O(n log log logn) time [Arthur 2007]

• no pattern-specific o(n logn) algorithm known for 2413-avoiding!

Pattern-agnostic approach: Use general-purpose sorting algorithm and analyze it
on π-avoiding inputs. In particular, insertion sort into self-adjusting BSTs:
• n 2(α(n))

O(|π|) time [Chalermsook, Goswami, Kozma, Mehlhorn, Saranurak 2015]

• n 2O(α(n)+|π|
2) time [Chalermsook, Gupta, Jiamjitrak, Acosta, Yingch. 2023]

where α(·) is the inverse-Ackermann function

Known Results
Can be done “non-uniformly”:

Theorem [Fredman 1976]

For any set Γ of permutations of length n, there exists a decision tree of depth
log2 |Γ | + 2n that sorts every input from Γ .

Pattern-specific approach: exploit the specific structure of π-avoiding
permutations for a fixed π

• k-increasing in O(log k · n) time
• 231-avoiding in O(n) time [Knuth 1968]

• 1234-, 1243- and 2143-avoiding in O(n) time [Arthur 2007]

• 1324-, 1342-, 1423- and 1432-avoiding in O(n log log logn) time [Arthur 2007]

• no pattern-specific o(n logn) algorithm known for 2413-avoiding!

Pattern-agnostic approach: Use general-purpose sorting algorithm and analyze it
on π-avoiding inputs. In particular, insertion sort into self-adjusting BSTs:
• n 2(α(n))

O(|π|) time [Chalermsook, Goswami, Kozma, Mehlhorn, Saranurak 2015]

• n 2O(α(n)+|π|
2) time [Chalermsook, Gupta, Jiamjitrak, Acosta, Yingch. 2023]

where α(·) is the inverse-Ackermann function

Main Result

Theorem
There is a comparison-based algorithm that sorts π-avoiding sequences of
length n in O((log sπ + 1) · n) time even if π is a priori unknown.

Matches the information-theoretic lower bound!

Overview of the algorithm

Two ingredients:
(I) Merging n/ logn presorted sequences of length logn in O((log sπ + 1) · n) time.
(II) Sorting n/k sequences of length k in O((log sπ + 1) · n) time for any

k ∈ O(log log logn).

The algorithm

1. Cut up the input sequence into parts of length log log logn.
2. Sort all of them using (II). O((log sπ + 1) · n)
3. Three layers of bottom-up MergeSort using (I). O((log sπ + 1) · n)

(I) Efficient Merging

The Combinatorial Hammer
• A 0-1 matrix M contains a pattern π if Mπ can be
obtained from M by removing rows, columns and
turning some 1-entries to 0-entries.
• exπ(n)← a maximum number of 1-entries in a

π-avoiding n× n 0-1 matrix.


0 0 1 0 1
1 0 1 0 0

0 1 0 1 1
1 0 0 0 1

 contains
132

Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

For each π, we have exπ ∈ Oπ(n).

Moreover, the limit cπ = limn→∞
1
n exπ(n) exists and exπ(n) ≤ cπ · n for all n. [Cibulka 2009]

Füredi-Hajnal limit of π

Lemma (The actual hammer)
Every m× n 0-1 matrix with strictly more than cπ ·max(m,n) 1-entries contains π.

Additionally, sπ and cπ are polynomially related – sπ ∈ Ω(c
2/9
π) ∩ O(c2π) [Cibulka 2009]

⇒ log sπ and log cπ are interchangeable within O-notation.

The Combinatorial Hammer
• A 0-1 matrix M contains a pattern π if Mπ can be
obtained from M by removing rows, columns and
turning some 1-entries to 0-entries.
• exπ(n)← a maximum number of 1-entries in a

π-avoiding n× n 0-1 matrix.


0 0 1 0 1
1 0 1 0 0

0 1 0 1 1
1 0 0 0 1

 contains
132

Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

For each π, we have exπ ∈ Oπ(n).

Moreover, the limit cπ = limn→∞
1
n exπ(n) exists and exπ(n) ≤ cπ · n for all n. [Cibulka 2009]

Füredi-Hajnal limit of π

Lemma (The actual hammer)
Every m× n 0-1 matrix with strictly more than cπ ·max(m,n) 1-entries contains π.

Additionally, sπ and cπ are polynomially related – sπ ∈ Ω(c
2/9
π) ∩ O(c2π) [Cibulka 2009]

⇒ log sπ and log cπ are interchangeable within O-notation.

The Combinatorial Hammer
• A 0-1 matrix M contains a pattern π if Mπ can be
obtained from M by removing rows, columns and
turning some 1-entries to 0-entries.
• exπ(n)← a maximum number of 1-entries in a

π-avoiding n× n 0-1 matrix.


0 0 1 0 1
1 0 1 0 0

0 1 0 1 1
1 0 0 0 1

 contains
132

Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

For each π, we have exπ ∈ Oπ(n).

Moreover, the limit cπ = limn→∞
1
n exπ(n) exists and exπ(n) ≤ cπ · n for all n. [Cibulka 2009]

Füredi-Hajnal limit of π

Lemma (The actual hammer)
Every m× n 0-1 matrix with strictly more than cπ ·max(m,n) 1-entries contains π.

Additionally, sπ and cπ are polynomially related – sπ ∈ Ω(c
2/9
π) ∩ O(c2π) [Cibulka 2009]

⇒ log sπ and log cπ are interchangeable within O-notation.

The Combinatorial Hammer
• A 0-1 matrix M contains a pattern π if Mπ can be
obtained from M by removing rows, columns and
turning some 1-entries to 0-entries.
• exπ(n)← a maximum number of 1-entries in a

π-avoiding n× n 0-1 matrix.


0 0 1 0 1
1 0 1 0 0

0 1 0 1 1
1 0 0 0 1

 contains
132

Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

For each π, we have exπ ∈ Oπ(n).

Moreover, the limit cπ = limn→∞
1
n exπ(n) exists and exπ(n) ≤ cπ · n for all n. [Cibulka 2009]

Füredi-Hajnal limit of π

Lemma (The actual hammer)
Every m× n 0-1 matrix with strictly more than cπ ·max(m,n) 1-entries contains π.

Additionally, sπ and cπ are polynomially related – sπ ∈ Ω(c
2/9
π) ∩ O(c2π) [Cibulka 2009]

⇒ log sπ and log cπ are interchangeable within O-notation.

The Combinatorial Hammer
• A 0-1 matrix M contains a pattern π if Mπ can be
obtained from M by removing rows, columns and
turning some 1-entries to 0-entries.
• exπ(n)← a maximum number of 1-entries in a

π-avoiding n× n 0-1 matrix.


0 0 1 0 1
1 0 1 0 0

0 1 0 1 1
1 0 0 0 1

 contains
132

Theorem (Füredi-Hajnal conjecture) [Marcus, Tardos 2004]

For each π, we have exπ ∈ Oπ(n).

Moreover, the limit cπ = limn→∞
1
n exπ(n) exists and exπ(n) ≤ cπ · n for all n. [Cibulka 2009]

Füredi-Hajnal limit of π

Lemma (The actual hammer)
Every m× n 0-1 matrix with strictly more than cπ ·max(m,n) 1-entries contains π.

Additionally, sπ and cπ are polynomially related – sπ ∈ Ω(c
2/9
π) ∩ O(c2π) [Cibulka 2009]

⇒ log sπ and log cπ are interchangeable within O-notation.

Efficient Pattern-Avoiding Merge
Simplified version: the algorithm knows π and its Füredi-Hajnal limit cπ.
Let d← ⌈2cπ⌉, m← n/ logn

Input: π-avoiding sequence S partitioned into m presorted sequences S1, . . . , Sm

1. S ′1, . . . , S ′⌊m/d⌋ ← merge consecutive d-tuples of sequences

O(log d · n)

2. while there are some non-exhausted sequences:
3. S ′i1, . . . , S

′
id+1
← d + 1 sequences with smallest initial elements

O(d · logn)

4. x← initial element of S ′id+1
(largest out of these)

O(logn)

5. output merge of S ′i1, . . . , S
′
id
while smaller than x

O(log d · n) overall

Round = One execution of the loop (lines 3.–5.)

Implementation:
• “large” heap for storing S ′1, . . . , S

′
⌊m/d⌋ where the key of S

′
i is its initial element

◦ (d + 1)×ExtractMin in step 3.
◦ (d + 1)×Insert after step 5. (returning non-empty sequences back)

• “small” heaps for performing d-way merges in steps 1. and 5.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.
⇒O(log d · n) runtime.

Efficient Pattern-Avoiding Merge
Simplified version: the algorithm knows π and its Füredi-Hajnal limit cπ.
Let d← ⌈2cπ⌉, m← n/ logn

Input: π-avoiding sequence S partitioned into m presorted sequences S1, . . . , Sm

1. S ′1, . . . , S ′⌊m/d⌋ ← merge consecutive d-tuples of sequences

O(log d · n)

2. while there are some non-exhausted sequences:
3. S ′i1, . . . , S

′
id+1
← d + 1 sequences with smallest initial elements

O(d · logn)

4. x← initial element of S ′id+1
(largest out of these)

O(logn)

5. output merge of S ′i1, . . . , S
′
id
while smaller than x

O(log d · n) overall

Round = One execution of the loop (lines 3.–5.)

Implementation:
• “large” heap for storing S ′1, . . . , S

′
⌊m/d⌋ where the key of S

′
i is its initial element

◦ (d + 1)×ExtractMin in step 3.
◦ (d + 1)×Insert after step 5. (returning non-empty sequences back)

• “small” heaps for performing d-way merges in steps 1. and 5.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.
⇒O(log d · n) runtime.

Efficient Pattern-Avoiding Merge
Simplified version: the algorithm knows π and its Füredi-Hajnal limit cπ.
Let d← ⌈2cπ⌉, m← n/ logn

Input: π-avoiding sequence S partitioned into m presorted sequences S1, . . . , Sm

1. S ′1, . . . , S ′⌊m/d⌋ ← merge consecutive d-tuples of sequences O(log d · n)
2. while there are some non-exhausted sequences:
3. S ′i1, . . . , S

′
id+1
← d + 1 sequences with smallest initial elements O(d · logn)

4. x← initial element of S ′id+1
(largest out of these) O(logn)

5. output merge of S ′i1, . . . , S
′
id
while smaller than x O(log d · n) overall

Round = One execution of the loop (lines 3.–5.)

Implementation:
• “large” heap for storing S ′1, . . . , S

′
⌊m/d⌋ where the key of S

′
i is its initial element

◦ (d + 1)×ExtractMin in step 3.
◦ (d + 1)×Insert after step 5. (returning non-empty sequences back)

• “small” heaps for performing d-way merges in steps 1. and 5.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.
⇒O(log d · n) runtime.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

Claim: The algorithm terminates after at most m
d = n

d logn rounds.

0 1 20 5 17 18 2 3 9 6 11 12 4 7 8 10 13 14 15 16 19

m/d columns

R
rounds

1 1
1 1

1 1
1 1

1 1

1 1

1

• Assume for a contradiction that R > m/d.
• # 1-entries ≥ d · (R− 1) ≥ 2cπ · (R− 1) ≥ cπ ·R = cπ · max(m/d,R)

⇒ the matrix contains π ⇒ the input sequence S contains π.

(II) Sorting Many Short Sequences

Brute Force with Decision Trees

• A decision tree T for input length k is a full binary
tree with internal nodes labeled by elements of [k]2

and leaves labeled by permutations of length k.

(1, 2)

(2, 3)

1, 2, 3 1, 3, 2

(1, 3)

2, 1, 3 3, 2, 1

Lemma
There are at most 22h+o(k)+o(h) decision trees of height at most h for input length k.

In our case k = log log logn and thus, there are o(n) trees to consider.

Theorem [Fredman 1976] [Marcus, Tardos 2004]

For every pattern π, there exists a decision tree of depth O((log sπ + 1) · k) that
sorts every π-avoiding permutation of length k.

What if the algorithm knows π?

1. P ← generate all π-avoiding permutations of length k

2. for every decision tree T of depth at most O((log sπ + 1) · k):
3. if T sorts every permutation from P :
4. Topt ← T and break
5. sort every sequence on input using Topt. O((log sπ + 1) · k · nk)

o(n)

Brute Force with Decision Trees

• A decision tree T for input length k is a full binary
tree with internal nodes labeled by elements of [k]2

and leaves labeled by permutations of length k.

(1, 2)

(2, 3)

1, 2, 3 1, 3, 2

(1, 3)

2, 1, 3 3, 2, 1

Lemma
There are at most 22h+o(k)+o(h) decision trees of height at most h for input length k.

In our case k = log log logn and thus, there are o(n) trees to consider.

Theorem [Fredman 1976] [Marcus, Tardos 2004]

For every pattern π, there exists a decision tree of depth O((log sπ + 1) · k) that
sorts every π-avoiding permutation of length k.

What if the algorithm knows π?

1. P ← generate all π-avoiding permutations of length k

2. for every decision tree T of depth at most O((log sπ + 1) · k):
3. if T sorts every permutation from P :
4. Topt ← T and break
5. sort every sequence on input using Topt. O((log sπ + 1) · k · nk)

o(n)

Brute Force with Decision Trees

• A decision tree T for input length k is a full binary
tree with internal nodes labeled by elements of [k]2

and leaves labeled by permutations of length k.

(1, 2)

(2, 3)

1, 2, 3 1, 3, 2

(1, 3)

2, 1, 3 3, 2, 1

Lemma
There are at most 22h+o(k)+o(h) decision trees of height at most h for input length k.

In our case k = log log logn and thus, there are o(n) trees to consider.

Theorem [Fredman 1976] [Marcus, Tardos 2004]

For every pattern π, there exists a decision tree of depth O((log sπ + 1) · k) that
sorts every π-avoiding permutation of length k.

What if the algorithm knows π?

1. P ← generate all π-avoiding permutations of length k

2. for every decision tree T of depth at most O((log sπ + 1) · k):
3. if T sorts every permutation from P :
4. Topt ← T and break
5. sort every sequence on input using Topt. O((log sπ + 1) · k · nk)

o(n)

Brute Force with Decision Trees

• A decision tree T for input length k is a full binary
tree with internal nodes labeled by elements of [k]2

and leaves labeled by permutations of length k.

(1, 2)

(2, 3)

1, 2, 3 1, 3, 2

(1, 3)

2, 1, 3 3, 2, 1

Lemma
There are at most 22h+o(k)+o(h) decision trees of height at most h for input length k.

In our case k = log log logn and thus, there are o(n) trees to consider.

Theorem [Fredman 1976] [Marcus, Tardos 2004]

For every pattern π, there exists a decision tree of depth O((log sπ + 1) · k) that
sorts every π-avoiding permutation of length k.

What if the algorithm knows π?

1. P ← generate all π-avoiding permutations of length k

2. for every decision tree T of depth at most O((log sπ + 1) · k):
3. if T sorts every permutation from P :
4. Topt ← T and break
5. sort every sequence on input using Topt. O((log sπ + 1) · k · nk)

o(n)

Conclusion

Theorem
There is a comparison-based algorithm that sorts π-avoiding sequences of
length n in O((log sπ + 1) · n) time even if π is a priori unknown.

Matches the information-theoretic lower bound!

Questions:
• Can we sort π-avoiding sequences with
◦ (log2 sπ +O(1)) · n comparisons, or even
◦ (log2 sπ + o(1)) · n comparisons?

• Are there other problems where we can exploit pattern-avoidance
algorithmically?

Thank you!

Conclusion

Theorem
There is a comparison-based algorithm that sorts π-avoiding sequences of
length n in O((log sπ + 1) · n) time even if π is a priori unknown.

Matches the information-theoretic lower bound!

Questions:
• Can we sort π-avoiding sequences with
◦ (log2 sπ +O(1)) · n comparisons, or even
◦ (log2 sπ + o(1)) · n comparisons?

• Are there other problems where we can exploit pattern-avoidance
algorithmically?

Thank you!

Step I without Prior Knowledge of π
Input: π-avoiding sequence S partitioned into m presorted sequences S1, . . . , Sm

1. d← 1

2. while there are some elements remaining:
3. S1, . . . , S⌊m/2⌋ ←merge consecutive pairs of sequences O(n)
4. d← 2 · d, m← ⌊m/2⌋
5. repeat m times or until all sequences are exhausted:
6. Si1, . . . , Sid+1

← d + 1 sequences with smallest initial elements
7. x← initial element of Sid+1

(largest out of these)
8. output merge Si1, . . . , Sid while smaller than x O(log dmax · n) overall

Phase = One execution of the outer loop (lines 2.–8.)

O(n)

Claim: The algorithm terminates after at most ⌈log cπ⌉ + 1 phases.
Proof:
• Let di and mi be values of d and m in the ith phase.
• Observe that di = 2i and mi ≤ n

di logn
• Assume that the algorithm reaches the phase ⌈log cπ⌉ + 1.
• For i = ⌈log cπ⌉ + 1, we have di ≥ 2cπ and the same argument as before shows
that mi rounds must suffice to finish merging all elements.

Step I without Prior Knowledge of π
Input: π-avoiding sequence S partitioned into m presorted sequences S1, . . . , Sm

1. d← 1

2. while there are some elements remaining:
3. S1, . . . , S⌊m/2⌋ ←merge consecutive pairs of sequences O(n)
4. d← 2 · d, m← ⌊m/2⌋
5. repeat m times or until all sequences are exhausted:
6. Si1, . . . , Sid+1

← d + 1 sequences with smallest initial elements
7. x← initial element of Sid+1

(largest out of these)
8. output merge Si1, . . . , Sid while smaller than x O(log dmax · n) overall

Phase = One execution of the outer loop (lines 2.–8.)

O(n)

Claim: The algorithm terminates after at most ⌈log cπ⌉ + 1 phases.
Proof:
• Let di and mi be values of d and m in the ith phase.
• Observe that di = 2i and mi ≤ n

di logn
• Assume that the algorithm reaches the phase ⌈log cπ⌉ + 1.
• For i = ⌈log cπ⌉ + 1, we have di ≥ 2cπ and the same argument as before shows

that mi rounds must suffice to finish merging all elements.

Step II without Prior Knowledge of π
Fix an enumeration of decision trees in the increasing order by their depth.

Input: sequences S1, . . . , Sn/k, each of length k

1. T ← first decision tree in the enumeration sequence
2. for i ∈ {1, . . . , n/k}:
3. S ′i ← rearrange Si using T

4. while S ′i is not sorted:
5. T ← next decision tree in the enumeration sequence
6. S ′i ← rearrange Si using T

7. output S ′i

Observation: The depth of the decision tree never exceeds O((log sπ + 1) · k).

We distinguish successful and unsuccessful applications of T on Si (lines 3. and 6.).

Claim: In total, there are exactly n/k successful and o(n) unsuccessful applications.
Proof:
• The sequence Si is sorted after a successful application of T ⇒ 1 per sequence.
• Each unsuccessful application causes an advance in the enumeration of

decision trees⇒ 1 per decision tree, o(n) in total.

Step II without Prior Knowledge of π
Fix an enumeration of decision trees in the increasing order by their depth.

Input: sequences S1, . . . , Sn/k, each of length k

1. T ← first decision tree in the enumeration sequence
2. for i ∈ {1, . . . , n/k}:
3. S ′i ← rearrange Si using T

4. while S ′i is not sorted:
5. T ← next decision tree in the enumeration sequence
6. S ′i ← rearrange Si using T

7. output S ′i

Observation: The depth of the decision tree never exceeds O((log sπ + 1) · k).

We distinguish successful and unsuccessful applications of T on Si (lines 3. and 6.).

Claim: In total, there are exactly n/k successful and o(n) unsuccessful applications.
Proof:
• The sequence Si is sorted after a successful application of T ⇒ 1 per sequence.
• Each unsuccessful application causes an advance in the enumeration of

decision trees⇒ 1 per decision tree, o(n) in total.

	(I) Efficient Merging
	(II) Sorting Many Short Sequences

