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Theorem (STGnley—Wllf ConjeCTU re) [Kiazar 2000; Marcus, Tardos 2004]
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Question: Can w-avoiding sequences be sorted in linear time for arbitrary 7?
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Known Results

Can be done “non-uniformly”:

Theorem [Fredman 1976]

For any set I' of permutations of length n, there exists a decision tree of depth
log, |I'| + 2n that sorts every input from I

Pattern-specific approach: exploit the specific structure of w-avoiding

permutations for a fixed 7
e k-increasing in O(logk - n) time
e 231-avoiding in O(n) time [Knuth 1968]
® 1234- 1243- and 2143-avoiding in O(n) fime [Arthur 2007]
® 1324- 1342-,1423- and 1432-avoiding in O(n logloglogn) time [aArthur 2007]
e no pattern-specific o(n logn) algorithm known for 2413-avoiding!

Pattern-agnostic approach: Use general-purpose sorting algorithm and analyze it
on m-avoiding inputs. In particular, insertion sort into self-adjusting BSTs:

o(|x|) .
o N Q(O‘(n)) TIMe [Chalermsook, Goswami, Kozma, Mehlhorn, Saranurak 2015]
2\ ..
o n 20(&(n)+|7r| ) TIMe [Chalermsook, Gupta, Jiamijitrak, Acosta, Yingch. 2023]

where «(-) is the inverse-Ackermann function



Main Result

There is a comparison-based algorithm that sorts w-avoiding sequences of
length n in O((log s + 1) - n) fime even if 7 is a priori unknown.

Matches the information-theoretic lower bound!



Overview of the algorithm

Two ingredients:
(I) Merging n/logn presorted sequences of length logn in O((log s, + 1) - n) fime.
(II) Sorting n/k sequences of length k in O((log s; + 1) - n) time for any
k € O(logloglogn).

The algorithm

1. Cut up the input sequence into parts of length log log log n.
2. Sort all of them using (I1). O((log s +1) - n)
3. Three layers of bottom-up MergeSort using (1). O((log sz +1) - n)
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The Combinatorial Hammer

e A O-1 matrix M contains a pattern « if M, can be 00101
obtained from M by removing rows, columns and 10100 contains
furning some 1-enftries to O-enftries. 01011 132

® cx,(n) < a maximum number of l-entries in @ 10001

m-avoiding n X n 0-1 matrix.

Theorem (FUredi-Hajnal conjecture) marcus, Tardos 2004]

For each «, we have ex; € O,(n).

Moreover, the limit ¢, = lim,,_og % ex,(n) exists and ex;(n) < ¢, - n for all n. [Cibuka 2009]

\d Furedi-Hajnal limit of 7

Lemma (The actual hammer)

Every m x n O-1 matrix with strictly more than ¢, - max(m, n) 1-enfries contains .

Additionally, s, and ¢, are polynomially related - s, € Q(c?/ NN O(c?) [Cibulka 2009]
= log s, and log ¢, are intferchangeable within O-notation.



Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows 7 and its Furedi-Hajnal limit ¢;.

Let d < [2¢,|, m < n/logn

Input: m-avoiding sequence S partitioned into m presorted sequences 51, . .

1. 51, ’Lm/dJ < merge consecutive d-tuples of sequences

2. while there are some non-exhausted sequences:

3  Si,...,8,, < d+1sequences with smallest initial elements
4. x < initial element of sgdﬂ (largest out of these)

5

output merge of S , ..., .S; while smaller than x

Round = One execution of the loop (lines 3.-5.)
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Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows 7 and its Furedi-Hajnal limit ¢;.

Let d < [2¢,|, m < n/logn

Input: m-avoiding sequence S partitioned into m presorted sequences S, ..., Sy
1. 51, ’Lm/dJ < merge consecutive d-tuples of sequences O(logd - n)
2. while there are some non-exhausted sequences:
3  Si,...,8,, < d+1sequences with smallest initial elements O(d - logn)
4. x <« initial element of S | (largest out of these) O(logn)
5. oufput merge of S ,...,S; while smaller than x O(logd - n) overall

Round = One execution of the loop (lines 3.-5.)

Implementation:
e “large” heap for storing 57, . . ., S’Lm/dJ where the key of S! is its initial element

o (d+ 1)xExtractMin in step 3.
o (d+ 1)xInsert affer step 5. (refurning non-empty sequences back)

e “small” heaps for performing d-way merges in steps 1. and 5.

Claim: The algorithm terminates after at most % = @ rounds.
= O(logd - n) runtime.
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Claim: The algorithm terminates after at most % = dlg‘gn rounds
SN NS ISR SN RSN DRSS RSN N
1 1

1 1

SR N EO U A A
1 1

IS S I T S

1 1
0O 1 2005 17 18]2 3 9|6 11 124 7 8|10 13 14|15 16 19

m/d columns

e Assume for a confradiction that R > m/d.
o #l-enfries>d-(R—1)>2¢,- (R—1) > ¢z - R=c¢; - max(m/d, R)

= the matrix contains © = the input sequence S contains .

R
rounds



(II) Sorting Many Short Sequences



Brute Force with Decision Trees

e A decision tree T for input length k is a full binary
tree with internal nodes labeled by elements of [k]*
and leaves labeled by permutations of length k.
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Brute Force with Decision Trees

e A decision tree T for input length £ is a full binary @ @
tree with internal nodes labeled by elements of [k]*
and leaves labeled by permutations of length k. 1,2,3] 11,3,2 2.1,3] 3,2,1

Lemma

There are at most 22" decision trees of height at most h for input length .

In our case k = logloglogn and thus, there are o(n) trees to consider.

Theorem [rredman 1976] [Marcus, Tardos 2004]

For every pattern =, there exists a decision tree of depth O((log s, + 1) - k) that
sorts every w-avoiding permutation of length k.

what if the algorithm knows 7?

1. P < generate all m-avoiding permutations of length &

2. for every decision tree T of depth at most O((log s, + 1) - k):

3. if T sorts every permutation from P: of)
4. Topt < T' and break

5. sort every sequence on input using Zopt. O((logs; +1)-k-7%)



Conclusion

There is a comparison-based algorithm that sorts w-avoiding sequences of
length n in O((log s + 1) - n) fime even if 7 is a priori unknown.

Matches the information-theoretic lower bound!

Questions:
e Can we sort m-avoiding sequences with
o (logy sr + O(1)) - n comparisons, or even
o (logy s+ 0(1)) - n comparisons?
e Are there other problems where we can exploit pattern-avoidance
algorithmically?



Conclusion

There is a comparison-based algorithm that sorts w-avoiding sequences of
length n in O((log s + 1) - n) fime even if 7 is a priori unknown.

Matches the information-theoretic lower bound!

Questions:
e Can we sort m-avoiding sequences with
o (logy sr + O(1)) - n comparisons, or even
o (logy s+ 0(1)) - n comparisons?
e Are there other problems where we can exploit pattern-avoidance
algorithmically?

Thank you!



Step I without Prior Knowledge of «

Input: m-avoiding sequence S partitioned into m presorted sequences S, ..., Sy
L. d<1
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Input: m-avoiding sequence S partitioned into m presorted sequences S, ..., Sy
L. d<1
2. while there are some elements remaining:
5. S1,...,5m/2) $~Merge consecutive pairs of sequences O(n)
4. d<+2-d, m<+ |m/2]
5. repeat m times or unftil all sequences are exhausted:
6. Sits -+ 004, < d+ 1 sequences with smallest initial elements } O(n)
/ x < initial element of §;,, | (largest out of these)
8 output merge S;,, ..., S;, while smaller than z O(log dyay - n) overall

Phase = One execution of the outer loop (lines 2.-8.)

Claim: The algorithm terminates affer at most [loge, | + 1 phases.

Proof:
e Let d; and m; be values of d and m in the ™ phase.
e Observe that d; = 2" and m; < Then
e Assume that the algorithm reaches the phase [loge, | + 1.
[

Fori = [loge, | + 1, we have d; > 2¢, and the same argument as before shows
that m; rounds must suffice to finish merging all elements. []



Step II without Prior Knowledge of «

Fix an enumeration of decision frees in the increasing order by their depth.

Input: sequences Sy, . .., 5,/ each of length k
1. T « first decision free in the enumeration sequence
2. forie{l,....,n/k}:
3. Sl <« rearrange S; using T’
while S is not sorted:
T < next decision tree in the enumeration sequence
S! «+ rearrange S; using T'
output S’
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Step II without Prior Knowledge of =

Fix an enumeration of decision frees in the increasing order by their depth.

Input: sequences Sy, . .., 5,/ each of length k
1. T « first decision free in the enumeration sequence
2. forie{l,....,n/k}:
3. Sl <« rearrange S; using T’

4. while S! is not sorted:

D. T < next decision tree in the enumeration sequence
6 S! < rearrange S; using T

/. output S!

Observation: The depth of the decision tree never exceeds O((log s, + 1) - k).
We distinguish successful and unsuccessful applications of T'on S; (lines 3. and 6.).

Claim: In total, there are exactly n/k successful and o(n) unsuccessful applications.
Proof:

® The seguence 5; is sorted affer a successful application of T' = 1 per seguence.

e Each unsuccessful application causes an advance in the enumeration of
decision frees = 1 per decision tree, o(n) in total. []
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