ROBOPROX

An Optimal Algorithm for Sorting
Pattern-Avoiding Sequences

Michal Opler
Czech Technical University in Prague
July 7, 2025

Co-funded by Robotics and Advanced Industrial Production

B the European Union S or eobonon CZ.02.01.01/00/22_008,/0004590

Comparison-Based Sorting

e Input: Sequence zy, xo, . .., z, (Of distinct values).
e Task: Rearrange input to increasing order.
e Access to input is available only through comparing pairs of elements.

Comparison-Based Sorting

e Input. Sequence z1, 9, ..., x, (Of distinct values).
e Task: Rearrange input to increasing order.
e Access to input is available only through comparing pairs of elements.

Any deterministic comparison-based sorting algorithm must perform Q(n logn)
comparisons in the worst case fo sort n elements.

Comparison-Based Sorting

e Input. Sequence z1, 9, ..., x, (Of distinct values).
e Task: Rearrange input to increasing order.
e Access to input is available only through comparing pairs of elements.

Any deterministic comparison-based sorting algorithm must perform Q(n logn)
comparisons in the worst case fo sort n elements.

Proof sketch:

Comparison-Based Sorting

e Input. Sequence z1, 9, ..., x, (Of distinct values).
e Task: Rearrange input to increasing order.
e Access to input is available only through comparing pairs of elements.

Any deterministic comparison-based sorting algorithm must perform Q(n logn)
comparisons in the worst case fo sort n elements.

Proof sketch:

Q(logn!)
o Q(nlogn)

~

> nl leaves L]

Restricted Inputs

e A family of inputs I" of length n cannot be sorted in o(log, |I'|) Time.
e When |I'| € 2 there is a possibility of sorting in O(n) time!

Restricted Inputs

e A family of inputs I" of length n cannot be sorted in o(log, |I'|) Time.
e When |I'| € 2 there is a possibility of sorting in O(n) time!

e Sequences with k runs

1,4,6,9,2,5,7, 3,8, 10

Restricted Inputs

e A family of inputs I" of length n cannot be sorted in o(log, |I'|) Time.
e When |I'| € 2 there is a possibility of sorting in O(n) time!

e Sequences with k runs O(logk - n)

1,4,6,9,2,5,7, 3,8, 10

Restricted Inputs

e A family of inputs I" of length n cannot be sorted in o(log, |I'|) Time.
e When |I'| € 2 there is a possibility of sorting in O(n) time!

e Sequences with k runs O(logk - n)
1,4,6,9,2,5,7, 3,8, 10
® k-increasing sequences

1,4,2,3,6,5,8,10,9, 7

Restricted Inputs

e A family of inputs I" of length n cannot be sorted in o(log, |I'|) Time.
e When |I'| € 2 there is a possibility of sorting in O(n) time!

e Sequences with k runs O(logk - n)
1,4,6,9,2,5,7,3, 8, 10
® -increasing sequences O(logk - n)

1,4,2,3,6,5,8,10,9, 7

Restricted Inputs

e A family of inputs I" of length n cannot be sorted in o(log, |I'|) Time.
e When |I'| € 2 there is a possibility of sorting in O(n) time!

Examples
e Sequences with k runs O(logk - n)
1,4,6,9,2,5,7, 3,8, 10
® -increasing sequences O(logk - n)
1,4,2,3,6,5,8,10,9,7
e Preorder (fraversal) sequences

2 %) — 42,1365

Restricted Inputs

e A family of inputs I" of length n cannot be sorted in o(log, |I'|) Time.
e When |I'| € 2 there is a possibility of sorting in O(n) time!

Examples
e Sequences with k runs O(logk - n)
1,4,6,9,2,5,7,3,8,10
® -increasing sequences O(logk - n)
1,4,2,3,6,5,8,10,9,7
e Preorder (traversal) sequences O(n)

2 %) — 42,1365

Pattern-Avoiding Inputs

e A permufation 7 is a sequence 7, . . ., m, Of
distinct values from [n] = {1,...,n}.

® \We can also represent m as an n x n 0-1 matrix M.

® A sequence contains a permutation pattern « if it
has a subsequence order-isomorphic to .
Otherwise, it avoids .

1
1
1
1 3 4
] T
8,51,7.4.329,6

Pattern-Avoiding Inputs

e A permufation 7 is a sequence 7, . . ., m, Of
distinct values from [n] = {1,...,n}.

® \We can also represent m as an n x n 0-1 matrix M.

® A sequence contains a permutation pattern « if it
has a subsequence order-isomorphic to .
Otherwise, it avoids .

Pattern-Avoiding Inputs

e A permutfation 7 is a sequence 7, ..., T, Of
distinct values from [n] = {1,...,n}.

® \We can also represent m as an n x n 0-1 matrix M.
® A sequence contains a permutation pattern « if it

1 3 4 2
has a subsequence order-isomorphic to . [] T
Otherwise, it avoids . 8,51,7,4,3 29,6

® k-increasing < (k+1,k, ..., 1)-avoiding
e preorder « stack-sortable +» 231-avoiding [knuth 1968]

Pattern-Avoiding Inputs

e A permutfation 7 is a sequence 7, ..., T, Of
distinct values from [n] = {1,...,n}.

® \We can also represent m as an n x n 0-1 matrix M.
® A sequence contains a permutation pattern « if it

1 3 4 2
has a subsequence order-isomorphic to . [] T
Otherwise, it avoids . 8,51,7,4,3 29,6

® k-increasing < (k+1,k, ..., 1)-avoiding
e preorder « stack-sortable +» 231-avoiding [knuth 1968]

Theorem (STGnley-Wllf ConjeCTU re) [Kiazar 2000; Marcus, Tardos 2004]

For every pattern m, the number of r-avoiding permutations of length n is 20+,

In fact, the limit s, = lim, o v/|{o avoids 7 | o € S, }| exists (arratia 1999]

\/ Stanley-Wilf limit of =

Pattern-Avoiding Inputs

e A permutfation 7 is a sequence 7, ..., T, Of
distinct values from [n] = {1,...,n}.

® \We can also represent m as an n x n 0-1 matrix M.
® A sequence contains a permutation pattern « if it

1 3 4 2
has a subsequence order-isomorphic to . [] T
Otherwise, it avoids . 8,51,7,4,3 29,6

® k-increasing < (k+1,k, ..., 1)-avoiding
e preorder « stack-sortable +» 231-avoiding [knuth 1968]

Theorem (STGnley—Wllf ConjeCTU re) [Kiazar 2000; Marcus, Tardos 2004]

For every pattern m, the number of r-avoiding permutations of length n is 20+,

In fact, the limit s, = lim, o v/|{o avoids 7 | o € S, }| exists (arratia 1999]

\/ Stanley-Wilf limit of =

Question: Can w-avoiding sequences be sorted in linear time for arbitrary 7?

Known Results

Can be done “non-uniformly”:

Theorem [Fredman 1976]

For any set I' of permutations of length n, there exists a decision tree of depth
log, |I'| + 2n that sorts every input from I

Known Results

Can be done “non-uniformly”:

Theorem [Fredman 1976]

For any set I' of permutations of length n, there exists a decision tree of depth
log, |I'| + 2n that sorts every input from I

Pattern-specific approach: exploit the specific structure of w-avoiding
permutations for a fixed 7

e k-increasing in O(logk - n) time

231-avoiding in O(n) fime [Knuth 1968]

1234-, 1243- and 2143-avoiding in O(n) fime [arthur 2007]

1324-,1342-, 1423- and 1432-avoiding in O(n logloglogn) time [arthur 2007]
no pattern-specific o(nlogn) algorithm known for 2413-avoiding!

Known Results

Can be done “non-uniformly”:

Theorem [Fredman 1976]

For any set I' of permutations of length n, there exists a decision tree of depth
log, |I'| + 2n that sorts every input from I

Pattern-specific approach: exploit the specific structure of w-avoiding

permutations for a fixed 7
e k-increasing in O(logk - n) time
e 231-avoiding in O(n) time [Knuth 1968]
® 1234- 1243- and 2143-avoiding in O(n) fime [Arthur 2007]
® 1324- 1342-,1423- and 1432-avoiding in O(n logloglogn) time [aArthur 2007]
e no pattern-specific o(n logn) algorithm known for 2413-avoiding!

Pattern-agnostic approach: Use general-purpose sorting algorithm and analyze it
on m-avoiding inputs. In particular, insertion sort into self-adjusting BSTs:

o(|x|) .
o N Q(O‘(n)) TIMe [Chalermsook, Goswami, Kozma, Mehlhorn, Saranurak 2015]
2\ ..
o n 20(&(n)+|7r|) TIMe [Chalermsook, Gupta, Jiamijitrak, Acosta, Yingch. 2023]

where «(-) is the inverse-Ackermann function

Main Result

There is a comparison-based algorithm that sorts w-avoiding sequences of
length n in O((log s + 1) - n) fime even if 7 is a priori unknown.

Matches the information-theoretic lower bound!

Overview of the algorithm

Two ingredients:
(I) Merging n/logn presorted sequences of length logn in O((log s, + 1) - n) fime.
(II) Sorting n/k sequences of length k in O((log s; + 1) - n) time for any
k € O(logloglogn).

The algorithm

1. Cut up the input sequence into parts of length log log log n.
2. Sort all of them using (I1). O((log s +1) - n)
3. Three layers of bottom-up MergeSort using (1). O((log sz +1) - n)

(I) Efficient Merging

The Combinatorial Hammer

e A O-1 matrix M contains a pattern « if M, can be 00101
obtained from M by removing rows, columns and 10100| contains
furning some 1-enftries to O-enftries. 01011 132

® cx,(n) < a maximum number of 1-entries in @ 10001

m-avoiding n X n 0-1 matrix.

The Combinatorial Hammer

e A O-1 matrix M contains a pattern « if M, can be 00101
obtained from M by removing rows, columns and 10100 contains
furning some 1-enftries to O-enftries. 01011 132

® cx,(n) < a maximum number of 1-entries in @ 10001

m-avoiding n X n 0-1 matrix.

The Combinatorial Hammer

e A O-1 matrix M contains a pattern « if M, can be 00101
obtained from M by removing rows, columns and 10100 contains
furning some 1-enftries to O-enftries. 01011 132

® cx,(n) < a maximum number of l-entries in @ 10001

m-avoiding n X n 0-1 matrix.

Theorem (FUredi-Hajnal conjecture) marcus, Tardos 2004]

For each «, we have ex; € O,(n).

Moreover, the limit ¢, = lim,,_og % ex,(n) exists and ex;(n) < ¢, - n for all n. [Cibuka 2009]

\d Furedi-Hajnal limit of 7

The Combinatorial Hammer

e A O-1 matrix M contains a pattern « if M, can be 00101
obtained from M by removing rows, columns and 10100 contains
furning some 1-enftries to O-enftries. 01011 132

® cx,(n) < a maximum number of l-entries in @ 10001

m-avoiding n X n 0-1 matrix.

Theorem (FUredi-Hajnal conjecture) marcus, Tardos 2004]

For each «, we have ex; € O,(n).

Moreover, the limit ¢, = lim,,_og % ex,(n) exists and ex;(n) < ¢, - n for all n. [Cibuka 2009]

\d Furedi-Hajnal limit of 7

Lemma (The actual hammer)

Every m x n O-1 matrix with strictly more than ¢, - max(m, n) 1-enfries contains .

The Combinatorial Hammer

e A O-1 matrix M contains a pattern « if M, can be 00101
obtained from M by removing rows, columns and 10100 contains
furning some 1-enftries to O-enftries. 01011 132

® cx,(n) < a maximum number of l-entries in @ 10001

m-avoiding n X n 0-1 matrix.

Theorem (FUredi-Hajnal conjecture) marcus, Tardos 2004]

For each «, we have ex; € O,(n).

Moreover, the limit ¢, = lim,,_og % ex,(n) exists and ex;(n) < ¢, - n for all n. [Cibuka 2009]

\d Furedi-Hajnal limit of 7

Lemma (The actual hammer)

Every m x n O-1 matrix with strictly more than ¢, - max(m, n) 1-enfries contains .

Additionally, s, and ¢, are polynomially related - s, € Q(c?/ NN O(c?) [Cibulka 2009]
= log s, and log ¢, are intferchangeable within O-notation.

Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows 7 and its Furedi-Hajnal limit ¢;.

Let d < [2¢,|, m < n/logn

Input: m-avoiding sequence S partitioned into m presorted sequences 51, . .

1. 51, ’Lm/dJ < merge consecutive d-tuples of sequences

2. while there are some non-exhausted sequences:

3 Si,...,8,, < d+1sequences with smallest initial elements
4. x < initial element of sgdﬂ (largest out of these)

5

output merge of S , ..., .S; while smaller than x

Round = One execution of the loop (lines 3.-5.)

-5 Om

Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows 7 and its Furedi-Hajnal limit ¢;.

Let d < [2¢,|, m < n/logn

Input: m-avoiding sequence S partitioned into m presorted sequences S, ..., Sy
1. 51, ’Lm/dJ < merge consecutive d-tuples of sequences
2. while there are some non-exhausted sequences:
3 Si,...,8,, < d+1sequences with smallest initial elements
4. x < initial element of sgdﬂ (largest out of these)
5

oufput merge of S} , ..., Sfd while smaller than x

]

Round = One execution of the loop (lines 3.-5.)

Implementation:
e “large” heap for storing 57, . . ., S’Lm/dJ where the key of S! is its initial element

o (d+ 1)xExtractMin in step 3.
o (d+ 1)xInsert affer step 5. (refurning non-empty sequences back)

e “small” heaps for performing d-way merges in steps 1. and 5.

Efficient Pattern-Avoiding Merge

Simplified version: the algorithm knows 7 and its Furedi-Hajnal limit ¢;.

Let d < [2¢,|, m < n/logn

Input: m-avoiding sequence S partitioned into m presorted sequences S, ..., Sy
1. 51, ’Lm/dJ < merge consecutive d-tuples of sequences O(logd - n)
2. while there are some non-exhausted sequences:
3 Si,...,8,, < d+1sequences with smallest initial elements O(d - logn)
4. x <« initial element of S | (largest out of these) O(logn)
5. oufput merge of S ,...,S; while smaller than x O(logd - n) overall

Round = One execution of the loop (lines 3.-5.)

Implementation:
e “large” heap for storing 57, . . ., S’Lm/dJ where the key of S! is its initial element

o (d+ 1)xExtractMin in step 3.
o (d+ 1)xInsert affer step 5. (refurning non-empty sequences back)

e “small” heaps for performing d-way merges in steps 1. and 5.

Claim: The algorithm terminates after at most % = @ rounds.
= O(logd - n) runtime.

Claim: The algorithm terminates after at most % = dl(?gn rounds.

Claim: The algorithm terminates after at most % = dlg‘gn rounds.

0 1 205 17 182 3 916 11 1214 7 &8 /|10 13 14|15 16 19

— /
~

m/d columns

Claim: The algorithm terminates after at most % = dlg‘gn rounds.
0O 1 2005 17 18]2 3 9|6 11 124 7 8|10 13 14|15 16 19

m/d columns

Claim: The algorithm terminates after at most % = dlg‘gn rounds.
0O 1 2005 17 18]2 3 9|6 11 124 7 8|10 13 14|15 16 19

m/d columns

Claim: The algorithm terminates after at most % = dlg‘gn rounds.
0O 1 20|55 17 18]2 3 9|6 11 12|14 7 8|10 13 14|15 16 19

m/d columns

Claim: The algorithm terminates after at most % = dlg‘gn rounds.
0O 1 2005 17 18]2 3 9|6 11 124 7 8|10 13 14|15 16 19

m/d columns

Claim: The algorithm terminates after at most % = dlg‘gn rounds.
0O 1 2005 17 18]2 3 9|6 11 12|14 7 8|10 13 14|15 16 19

m/d columns

- dlog

b 17 18

6 11 12

10 13 14

15 16 19

_/

~

m/d columns

- dlogn

b 17 18

6 11 12

10 13 14

15 16 19

_/

~

m/d columns

R
rounds

- dlogn

b 17 18

6 11 12

10 13 14

15 16 19

_/

~

m/d columns

R
rounds

Claim: The algorithm terminates after at most % = dlg‘gn rounds
SN NS ISR SN RSN DRSS RSN N
1 1

1 1

SR N EO U A A
1 1

IS S I T S

1 1
0O 1 2005 17 18]2 3 9|6 11 124 7 8|10 13 14|15 16 19

m/d columns

e Assume for a confradiction that R > m/d.
o #l-enfries>d-(R—1)>2¢,- (R—1) > ¢z - R=c¢; - max(m/d, R)

= the matrix contains © = the input sequence S contains .

R
rounds

(II) Sorting Many Short Sequences

Brute Force with Decision Trees

e A decision tree T for input length k is a full binary
tree with internal nodes labeled by elements of [k]*
and leaves labeled by permutations of length k.

1,2,3

1,3,2

2,1,3

3,2,1

Brute Force with Decision Trees

e A decision tree T for input length £ is a full binary @ @
tree with internal nodes labeled by elements of [k]*
and leaves labeled by permutations of length &. 1,2,3] 11,3,2 2,1,3] 3,2,1

Lemma

There are at most 22" decision trees of height at most h for input length .

In our case k = logloglogn and thus, there are o(n) trees to consider.

Brute Force with Decision Trees

e A decision tree T for input length £ is a full binary @ @
tree with internal nodes labeled by elements of [k]*
and leaves labeled by permutations of length &. 1,2,3] 11,3,2 2,1,3] 3,2,1

Lemma

There are at most 22" decision trees of height at most h for input length .

In our case k = logloglogn and thus, there are o(n) trees to consider.

Theorem [rredman 1976] [Marcus, Tardos 2004]

For every pattern =, there exists a decision tree of depth O((log s, + 1) - k) that
sorts every w-avoiding permutation of length k.

Brute Force with Decision Trees

e A decision tree T for input length £ is a full binary @ @
tree with internal nodes labeled by elements of [k]*
and leaves labeled by permutations of length k. 1,2,3] 11,3,2 2.1,3] 3,2,1

Lemma

There are at most 22" decision trees of height at most h for input length .

In our case k = logloglogn and thus, there are o(n) trees to consider.

Theorem [rredman 1976] [Marcus, Tardos 2004]

For every pattern =, there exists a decision tree of depth O((log s, + 1) - k) that
sorts every w-avoiding permutation of length k.

what if the algorithm knows 7?

1. P < generate all m-avoiding permutations of length &

2. for every decision tree T of depth at most O((log s, + 1) - k):

3. if T sorts every permutation from P: of)
4. Topt < T' and break

5. sort every sequence on input using Zopt. O((logs; +1)-k-7%)

Conclusion

There is a comparison-based algorithm that sorts w-avoiding sequences of
length n in O((log s + 1) - n) fime even if 7 is a priori unknown.

Matches the information-theoretic lower bound!

Questions:
e Can we sort m-avoiding sequences with
o (logy sr + O(1)) - n comparisons, or even
o (logy s+ 0(1)) - n comparisons?
e Are there other problems where we can exploit pattern-avoidance
algorithmically?

Conclusion

There is a comparison-based algorithm that sorts w-avoiding sequences of
length n in O((log s + 1) - n) fime even if 7 is a priori unknown.

Matches the information-theoretic lower bound!

Questions:
e Can we sort m-avoiding sequences with
o (logy sr + O(1)) - n comparisons, or even
o (logy s+ 0(1)) - n comparisons?
e Are there other problems where we can exploit pattern-avoidance
algorithmically?

Thank you!

Step I without Prior Knowledge of «

Input: m-avoiding sequence S partitioned into m presorted sequences S, ..., Sy
L. d<1
2. while there are some elements remaining:
5. S1,...,5m/2) $~Merge consecutive pairs of sequences O(n)
4. d<+2-d, m<+ |m/2]
5. repeat m times or until all sequences are exhausted:
6. Sits -+ 004, < d+ 1 sequences with smallest initial elements } O(n)
/ x < initial element of §;,, | (largest out of these)
8 output merge S;,, ..., S;, while smaller than z O(log dyay - n) overall

Phase = One execution of the outer loop (lines 2.-8.)

Step I without Prior Knowledge of «

Input: m-avoiding sequence S partitioned into m presorted sequences S, ..., Sy
L. d<1
2. while there are some elements remaining:
5. S1,...,5m/2) $~Merge consecutive pairs of sequences O(n)
4. d<+2-d, m<+ |m/2]
5. repeat m times or unftil all sequences are exhausted:
6. Sits -+ 004, < d+ 1 sequences with smallest initial elements } O(n)
/ x < initial element of §;,, | (largest out of these)
8 output merge S;,, ..., S;, while smaller than z O(log dyay - n) overall

Phase = One execution of the outer loop (lines 2.-8.)

Claim: The algorithm terminates affer at most [loge, | + 1 phases.

Proof:
e Let d; and m; be values of d and m in the ™ phase.
e Observe that d; = 2" and m; < Then
e Assume that the algorithm reaches the phase [loge, | + 1.
[

Fori = [loge, | + 1, we have d; > 2¢, and the same argument as before shows
that m; rounds must suffice to finish merging all elements. []

Step II without Prior Knowledge of «

Fix an enumeration of decision frees in the increasing order by their depth.

Input: sequences Sy, . .., 5,/ each of length k
1. T « first decision free in the enumeration sequence
2. forie{l,....,n/k}:
3. Sl <« rearrange S; using T’
while S is not sorted:
T < next decision tree in the enumeration sequence
S! «+ rearrange S; using T'
output S’

~N O O A

Step II without Prior Knowledge of =

Fix an enumeration of decision frees in the increasing order by their depth.

Input: sequences Sy, . .., 5,/ each of length k
1. T « first decision free in the enumeration sequence
2. forie{l,....,n/k}:
3. Sl <« rearrange S; using T’

4. while S! is not sorted:

D. T < next decision tree in the enumeration sequence
6 S! < rearrange S; using T

/. output S!

Observation: The depth of the decision tree never exceeds O((log s, + 1) - k).
We distinguish successful and unsuccessful applications of T'on S; (lines 3. and 6.).

Claim: In total, there are exactly n/k successful and o(n) unsuccessful applications.
Proof:

® The seguence 5; is sorted affer a successful application of T' = 1 per seguence.

e Each unsuccessful application causes an advance in the enumeration of
decision frees = 1 per decision tree, o(n) in total. []

	(I) Efficient Merging
	(II) Sorting Many Short Sequences

