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Framework

Large (n→∞) random structures
Random permutations, Sn
Erdös-Renyi graphs, G (n, p)
Preferential attachment graphs, G (n,m, α) etc.

Properties
Avoidance of a certain pattern, existence of a fixed point etc.
Existence of a cycle, Hamiltonicity, connectivity etc.

Probability that a given property holds
Does there exist a limit for the probability?
If so, is the probability different from 0 or 1? etc.
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Random permutations

If σn is a uniformly random permutation of length n, then

P(σn avoids 231) = P(σn avoids 321) =
Cn

n!
→ 0,

where Cn =
1

n + 1

(
2n

n

)
∼ 4n
√
πn3/2

is the nth Catalan number.

Theorem (Foy, Woods, ’90)

There exists a first-order property ϕ, e.g. avoiding a given pattern,
such that

lim
n→∞

P(σ2n satisfies ϕ) = 1 and lim
n→∞

P(σ2n+1 satisfies ϕ) = 0.

That is to say, limn→∞ P(σn satifies ϕ) does not exist.



321-avoiding permutations Random processes

Random pattern avoiding permutations

Example

Let ϕmax mean the last entry of the permutation is the largest. We can
show that

lim
n→∞

P(σ231
n � ϕmax) = lim

n→∞
P(σ321

n � ϕmax) = lim
n→∞

Cn−1

Cn
=

1

4
.

where σ231
n (σ321

n ) is a uniformly random 231(321)-avoiding permutation
of length n.

Theorem (Albert, Bouvel, Féray, Noy ’22)

Let σ231
n is a randomly chosen 231-avoiding permutation and ϕ is a

first-order property on permutations. Then

lim
n→∞

P(σ231
n � ϕ) exists.
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The proof of the result above uses the recursive pattern on the right.
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π = 1 4 2 3 7 5 6 8 10 9 ∈ AV(321)
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π = 1 5 2 4 3 10 6 7 9 8 ∈ AV(231)

Figure: Two increasing subsequences vs. the recursive pattern

Theorem (Ö.,’23)

For any first-order property ϕ, limn→∞ P(σ321
n � ϕ) exists.
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Quantifying properties

The quantifier depth of a first-order property is defined recursively as

If ϕ is atomic, then qd(ϕ) = 0.

If ψ = ¬ϕ, then qd(ψ) = qd(ϕ).

If ψ = ∀xϕ or ψ = ∃xϕ, then qd(ψ) = qd(ϕ) + 1.

If ψ = ϕ1 ∨ ϕ2, ψ = ϕ1 ∧ ϕ2 or ϕ1 ⇒ ϕ2 then
qd(ψ) = max{qd(ϕ1), qd(ϕ2)}.

Example

ϕmax = ∃x∀y [¬(x = y)⇒ (y <position x) ∧ (y <value x)] has quantifier
depth 2.
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Elementarily equivalence

Definition

Given two comparable structures Σ and Σ′, we say Σ ≡k Σ′ if for any
first-order property ϕ with qd(ϕ) ≤ k

Σ � ϕ if and only if Σ′ � ϕ.

Σ and Σ′ are elementarily equivalent if Σ ≡k Σ′ for all k.

Example

σ = 1 2 3 8 5 6 7 ≡2 1 2 3 7 5 6 = σ′

(Z, <) and (Z2, <lex) are elementarily equivalent but not isomorphic.

Theorem (Gurevich, ’83)

There are finitely many equivalence classses of ≡k for any structure with
only relational symbols (permutations, graphs, matroids etc.)
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Binary words

We want to define a process over the equivalence classes of ≡k to study
the limiting probability as n→∞.

Example (Lynch, ’93)

Consider the set of binary words where at any position 1 occurs with
probability p ∈ [0, 1] and 0 with probability 1− p. For example,

P(00011) = p3(1− p)2.

For any words v and w and s ∈ {0, 1},

v ≡k w =⇒ vs ≡k ws.

So if wn is a random binary word of length n, for all w ≡k w ′,

P(wn+1 ∈ L |wn = w) = P(wn+1 ∈ L |wn = w ′)

for any equivalance class L. That gives a Markov chain on equivalance
classes with transition probabilities p or 1− p.
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Markov chains

Definition

A sequence of random variables {X0,X1,X2, . . .} is a Markov chain with
state space S and the transition matrix P if

P(Xn+1 = j |Xn = i) = P(i , j) for all i , j ∈ S and n = 0, 1, 2, . . .

A chain is irreducible if for all i , j ∈ S , ∃m such that Pm(i , j) > 0.

A chain is aperiodic if for all i ∈ S , gcd{n ∈ N : Pn(i , i) > 0} = 1.

Theorem (Perron-Frobenius)

If a Markov chain defined on a finite state space S is irreducible and
aperiodic, it has a unique stationary distribution π on S ,

πP = π.
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Example

Let

P1 =

 0 1 0
0 2/3 1/3

1/2 1/2 0

 ,P2 =


1/4 3/4 0 0

1 0 0 0
0 0 1/3 2/3
0 0 1/2 1/2

 ,P3 =

[
0 1
1 0

]
.

P2 is reducible and P3 is periodic. While P1 is neither and has

π = [1/9, 2/3, 2/9]

as its stationary distribution.

Some applications of finite-state space MCs in this context:

(Lynch ’93) Limit laws for random binary words,

(Braunfeld and Kukla, ’21) Convergence for layered permutations
(direct sum of decreasing permutations).



321-avoiding permutations Random processes

321-avoiding permutations

1

21

231

2341 2314

213

2413 2143 2134

12

132

1342 1324

312

3412 3142 3124

123

4123 1423 1243 1234

Figure: The children of each vertex of rank n are obtained by inserting
n + 1 in a position such that the new permutation does not contain 321
pattern.
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A finer state space

Recall σ321n is a uniformly random 321-avoiding permutation of
length n. Even if σ ≡k σ

′, it can be the case that

P(σ321n+1 ∈ L |σ321n = σ) 6= P(σ321n+1 ∈ L |σ321n = σ′).

The set of elementary eqv. classes is not a fine enough state space.

Figure: Language as a Markov process
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Tail configuration

Figure: The tail configuration of size k = 5 of a permutation in AV (321).
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A finer state space

Recall σ321n is a uniformly random 321-avoiding permutation of
length n. Even if σ ≡k τ , it can be the case that

P(σ321n+1 ∈ L |σ321n = σ) 6= P(σ321n+1 ∈ L |σ321n = τ)

However, if, in addition, the tail configurations of size k of σ and τ
agree, then

P(σ321n+1 ∈ L |σ321n = σ) = P(σ321n+1 ∈ L |σ321n = τ).
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Tail configuration

ψ = (ψ1, ψ2, ψ3, ψ4, ψ5) ψ → ψ′

Figure: The tail configuration ψ evolves into ψ′ following the insertion.
The red dot represent the peak and k = 5 in this example.

Lemma (Well-definedness)

Let π, σ ∈ AV(321) with a common tail configuration ψ and π ≡k σ for a
fixed k . Then the logical classes of the permutations obtained by
insertion depend only on the insertion location.
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The distance to the rightmost descent, Qn

The number of leaves with i branches at the nth level of the Catalan tree
is counted by the ballot numbers:

qn,i =
i − 1

n

(
2n − i

n − 1

)
for i = 2, . . . , n + 1,

which can be obtained from

qn,i = [zn]

(
1−
√

1− 4z

2

)r

Therefore, P(Qn = i) = qn,i/Cn and

(Stationary distribution) πi = lim
n→∞

P(Qn = i) =
i

2i+1
for i = 2, 3, . . .

Note that

E[Qn] =
Cn+1

Cn
→ 4 as n→∞.
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Countable state-space Markov chains

Definition

Let τii := minn{Xn = i |X0 = i}, the first return time.

A chain is positive recurrent if E[τii ] <∞.

It is null recurrent if P(τii <∞) = 1 E[τii ] =∞.

It is transitive if P(τii <∞) < 1.

Example

1 (Symmetric random walk) S = Z, P(i , j) = 1/2 for j = i − 1, i + 1.
The chain is null recurrent.

2 (Geometric walk) S = Z≥0, P(i , 0) = q and P(i , i + 1) = p where
p + q = 1. The chain is positive recurrent with π = [q, qp, qp2, . . .].

3 (Symmetric random walk on Zd for d ≥ 3) S = Zd , P(i , j) = 1/2d
if |i − j | = 1. Positive probability of no return.
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Countable state-space Markov chains

Theorem

If a countable state-space chain is irreducible, aperiodic and positive
recurrent, it has a unique stationary distribution.

Some applications of countable state-space MCs in this context is

(Muller, Skerman, Verstraaten, ’23) Logical limit law with respect
to the Mallows distribution on permutations.

(Ö., ’24) Limit law for preferential attachment graphs

1

1/2

1/4 1/4

1/2

1/6 1/6 1/6

...

Figure: Uniform distribution over AV2(321) but not over AV3(321)
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Countable state-space Markov chains

1

2/5

1/5

1/10 1/10

1/5

1/15 1/15 1/15

3/5

1/5

1/10 1/10

1/5

1/15 1/15 1/15

1/5

1/20 1/20 1/20 1/20

Figure: Uniform distribution over AV3(321) but at no other stage
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Countable state-space Markov chains

1

1/2, 2/5, 5/14, · · ·

1/5, 4/25, · · · 1/5, 6/25, · · ·

1/2, 3/5, 9/14, · · ·

1/5, 2/15, · · · 1/5, 1/5, 27/140 · · · 1/5, 4/15, · · ·

...

Figure: Ratios of descendants at the same level as the tree branches out

For any σ ∈ AVn(321),

lim
N→∞

∣∣descendants of σ at the N th level
∣∣

|descendants of all AVn(321) at the N th level|
> 0
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A limiting distribution

1

1/4

1/16 3/16

3/4

1/16 3/16 1/2

...

Figure: The limiting ratios are non-uniform at any stage

We can define a Markov chain for the statistic Qn in this case. The
transition probabilities of the Markov chain are

P(i , j) =
j

i · 2i−j+2
for j = 2, . . . , i , i + 1.

However, E[Qn]→∞. In fact, the chain is null-recurrent.
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Symbolic chains (Infinite transfer matrices)

Define a directed graph on some V with an irreducible and aperiodic
adjacency matrix A. Let

(Perron value) λ = n
√

An(i , j)

and
(Left and right eigenvectors of λ) ~l · A = λ~l A ·~r = λ~r .

Observe that for stochastic matrices (MC matrices), λ = 1, ~r = 1

and ~l is the stationary distribution if exists.

Let πi (n) denote the frequency of paths leading to i at the nth stage.

Theorem (Kitchens ’98)

Suppose A is irreducible and aperiodic on V . If ~l ·~r <∞, then
limn→∞ πi (n)→ πi > 0 for some i .
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Symbolic chains

We let V = {2, 3, . . .} and

A(i , j) =

{
1 if j = 2, 3, . . . , i + 1

0 otherwise

The Perron value of A is 4 and it has left and right eigenvectors:

l = l =
(
1, 1, 34 , · · · ,

n
2n−1 , · · ·

)
r = (1, 3, 8, . . . , (1 + n)2n−2, . . .).

l · r =∞ ⇒ not positive recurrent according to Kitchens ’98. In fact,
this chain is classified as transitive.

However, we know that πi (n) = P(Qn = i) > 0.
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Operator viewpoint

Lemma

Let Γ = (V ,E ) be a locally finite, strongly connected and non-partite
directed graph, ∆V be the probability simplex on the set of vertices and
A be the adjacency matrix of Γ. Define

T : ∆V → ∆V as T (w) =
wTA

‖wTA‖1
.

If T (K ) ⊆ K for some non-empty, compact and convex K ⊆ ∆V , then
there exists a unique w∗ ∈ K such that limn→∞ T n(w0) = w∗ for all
w0 ∈ ∆V .

irreducible ⇔ strongly connected
aperiodic ⇔ non-partite

positive recurrence ⇔ compactness
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Compact set

ψ1

ψ

We take V = L×Ψk instead of {2, 3, . . .} where

L is the set of all elementary equivalence classes (finite)

Ψk is the set of all tail configurations for a fixed k (countable)

The subset for the stationary distribution for |ψ1| (or π as limn Qn) :

Π :=

{
w ∈ ∆V : Pw (|ψ1| = i) =

i

2i+1
for i = 2, 3, . . .

}
,

and the convex, compact set in the theorem:

KA := {w ∈ Π : Ew (|ψ1| · |ψ|) ≤ A(k)} ⊂ ∆V .
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