321-avoiding permutations and random processes

Alperen Ozdemir

KTH Royal Institute of Technology



321-avoiding permutations
©000000

Framework

m Large (n — oo) random structures
Random permutations, S,
Erdos-Renyi graphs, G(n, p)
Preferential attachment graphs, G(n, m, a) etc.

m Properties
Avoidance of a certain pattern, existence of a fixed point etc.
Existence of a cycle, Hamiltonicity, connectivity etc.

m Probability that a given property holds
Does there exist a limit for the probability?
If so, is the probability different from 0 or 17 etc.
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Random permutations

If o, is a uniformly random permutation of length n, then

_ G

P(o,, avoids 231) = P(o, avoids 321) — 0,

1 2n 4n
where C, = —— ~ ————is the nth Catalan number.
n+1\ n \/Tn3/2

Theorem (Foy, Woods, '90)

There exists a first-order property ¢, e.g. avoiding a given pattern,
such that

lim P(o2, satisfies ¢) =1 and lim P(o2,41 satisfies ¢) = 0.
n—oo n—oo

That is to say, lim,_,~ P(co, satifies ¢) does not exist.
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Random pattern avoiding permutations

Example

Let ©wmax mean the last entry of the permutation is the largest. We can

show that
Coe 1
; 231 _ 321 _ n-1 _ 2
Jim PO ) = Jim P ) = Jim S = 1
where 0231 (0321) is a uniformly random 231(321)-avoiding permutation
of length n.

Theorem (Albert, Bouvel, Féray, Noy '22)

Let 033! is a randomly chosen 231-avoiding permutation and ¢ is a
first-order property on permutations. Then

lim P(c23 E @) exists.
n— o0
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The proof of the result above uses the recursive pattern on the right.

10
10 A
9
e 38
7 Lo
6 *
5 L‘,,,J
C——
| 4
| ® 3
| 2 L]
1 Le____;
Lo
m™=14237568109 € AV(321) m=15243106798 € AV(231)

Figure: Two increasing subsequences vs. the recursive pattern

Theorem (O.,'23)

For any first-order property o, lim, o P(c3?! E ¢) exists.
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Quantifying properties

The quantifier depth of a first-order property is defined recursively as
m If ¢ is atomic, then qd(¢) = 0.
m If ) = g, then qd(¥) = qd(¢p).
m If ) = Vxp or ¢ = Ixp, then qd(v)) = qd(y) + 1.

mIf =1 Vo, =p1 Apsor p; = @ then
qd(¥) = max{qd(1),qd(¢2)}.

Omax = IXVy[=(x = y) = (¥ <position X) A (¥ <vawe X)] has quantifier
depth 2.
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Elementarily equivalence

Given two comparable structures ¥ and ¥/, we say ¥ =, ¥’ if for any
first-order property ¢ with qd(¢) < k

Y E @ if and only if X' .

Y and ¥’ are elementarily equivalent if ¥ =, ¥’ for all k.

Example

mo=1238567=,123756=0'

m (Z,<) and (Z?, <iex) are elementarily equivalent but not isomorphic.

Theorem (Gurevich, '83)

There are finitely many equivalence classses of = for any structure with
only relational symbols (permutations, graphs, matroids etc.)
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Binary words

We want to define a process over the equivalence classes of =, to study
the limiting probability as n — oo.

Example (Lynch, '93)

Consider the set of binary words where at any position 1 occurs with
probability p € [0, 1] and 0 with probability 1 — p. For example,

P(00011) = p*(1 — p)>.
For any words v and w and s € {0,1},
V=KW = VS =, WSs.
So if w, is a random binary word of length n, for all w =, w/,
P(Wni1 € LIWn = w) = P(Wai1 € L |wy = w')

for any equivalance class L. That gives a Markov chain on equivalance
classes with transition probabilities p or 1 — p.
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Markov chains

Definition
A sequence of random variables {Xo, X1, X5, ...} is a Markov chain with
state space S and the transition matrix P if

P(Xpt1=J| X, =1)=P(i,j) forall i,j € Sand n=0,1,2,...
A chain is irreducible if for all /,j € S, 3 m such that P™(i, ) > 0.

A chain is aperiodic if for all i € S, ged{n € N : P"(i,i) > 0} = 1.

Theorem (Perron-Frobenius)

If a Markov chain defined on a finite state space S is irreducible and
aperiodic, it has a unique stationary distribution 7 on S,

TP =m.
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Let
0 1 o0 AN S R
Pr=1|0 2/3 1/3|,P,= 7P3:|: :l
2 12 0 0 0 1/3 2/3 10
0 0 1/2 1/2

P, is reducible and Pjs is periodic. While P; is neither and has
m=[1/9,2/3,2/9]
as its stationary distribution.

Some applications of finite-state space MCs in this context:
m (Lynch '93) Limit laws for random binary words,

m (Braunfeld and Kukla, '21) Convergence for layered permutations
(direct sum of decreasing permutations).
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321-avoiding permutations

12
231 213
N /////,/W\\\\\\\\
2341 2314
2413 2143 2134
32 312 12

1 3

13@24 /’\ /\

3412 3142 3124 4123 1423 1243 1234

Figure: The children of each vertex of rank n are obtained by inserting
n—+ 1 in a position such that the new permutation does not contain 321
pattern.
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A finer state space

Recall 0321 is a unlformly random 321-avoiding permutation of
length n. Even if o =, ¢/, it can be the case that

P03y € L|op?t = 0) # P(033h € L 03? = o).

The set of elementary eqv. classes is not a fine enough state space.

} \\\\\\\ kY

Syntactic
Structures

Figure: Language as a Markov process
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Tail configuration

Figure: The tail configuration of size k =5 of a permutation in AV/(321).
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A finer state space

Recall 032! is a uniformly random 321-avoiding permutation of
length n. Even if ¢ =4 7, it can be the case that

P(r33) € Lo = o) £ P(o33) € L] o = 7)

However, if, in addition, the tail configurations of size k of o and 7
agree, then

P04 € L]0P = 0) = P02} € L] o3 = 1),
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Tail configuration

¢:(¢17¢27¢37¢4,¢5) ¢_>1/)/

Figure: The tail configuration v evolves into )’ following the insertion.
The red dot represent the peak and k = 5 in this example.

Lemma (Well-definedness)

Let w,0 € AV(321) with a common tail configuration 1) and m = o for a
fixed k. Then the logical classes of the permutations obtained by
insertion depend only on the insertion location.
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The distance to the rightmost descent, Q,

The number of leaves with i branches at the nth level of the Catalan tree
is counted by the ballot numbers:

ni = '_1<2"_'> for i=2,....n+1,

n n—1

which can be obtained from

o (1—VI—4z\"
o= 7 (L)

Therefore, P(Q, = i) = ¢,i/C, and

(Stationary distribution) m; = lim P(Q, =1i) =

am ﬁ forl':273,...

Note that

E[Q.] = C2+1 — 4 as n — oo.
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Countable state-space Markov chains

Let 7 := min,{X, = i | Xo = i}, the first return time.
m A chain is positive recurrent if E[7;] < cc.
m It is null recurrent if P(7; < o00) =1 E[1;] = .

m |t is transitive if P(7; < o0) < 1.

(Symmetric random walk) S = Z, P(i,j) =1/2 for j=i—1,i+ 1.
The chain is null recurrent.

(Geometric walk) S = Zx>g, P(i,0) = g and P(i,i+ 1) = p where
p -+ q = 1. The chain is positive recurrent with = = [q, gp, gp>, .. .].

(Symmetric random walk on Z? for d > 3) S =74, P(i,j) = 1/2d
if |i — j| = 1. Positive probability of no return.
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Countable state-space Markov chains

Theorem

If a countable state-space chain is irreducible, aperiodic and positive
recurrent, it has a unique stationary distribution.

Some applications of countable state-space MCs in this context is

m (Muller, Skerman, Verstraaten, '23) Logical limit law with respect
to the Mallows distribution on permutations.

m (O., '24) Limit law for preferential attachment graphs
1
1/2 1/2

/\
1/4 1/4
/6  1/6 1/6

Figure: Uniform distribution over AV,(321) but not over AV3(321)
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Countable state-space Markov chains

2/5 3/5
1/5 1/5
W e N
/10 1/10
/15 1/15  1/15
/5 1/5 1/

1 5

1/{\1/10 /’\ /\

1/15  1/15  1/15  1/20  1/20  1/20  1/20

Figure: Uniform distribution over AV3(321) but at no other stage
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Countable state-space Markov chains

1/2,2/5,5/14,-4- 1/2,3/5,9/14,-»-
1/5,4/25,---  1/5,6/25, - -

1/5,2/15,---  1/5,1/5,27/140---  1/5,4/15, - -

Figure: Ratios of descendants at the same level as the tree branches out

For any o € AV,,(321),

i |descendants of o at the N*" level|
N—oo |descendants of all AV,(321) at the Nt levell
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A limiting distribution

1

TN

1/4 3/4

/\
1/16  3/16
1/16  3/16  1/2

Figure: The limiting ratios are non-uniform at any stage

We can define a Markov chain for the statistic @, in this case. The
transition probabilities of the Markov chain are

. J . .
’D(Ia./):w forj:2,...,/,/+1.

However, E[Q,] — oc. In fact, the chain is null-recurrent.
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Symbolic chains (Infinite transfer matrices)

Define a directed graph on some V with an irreducible and aperiodic
adjacency matrix A. Let

(Perron value) X\ = /A"(i,))

and
(Left and right eigenvectors of \) - A=\ A-7=\

1

s

m Observe that for stochastic matrices (MC matrices), A=1,7=1
and / is the stationary distribution if exists.

Let 7;(n) denote the frequency of paths leading to i at the nth stage.

Theorem (Kitchens '98)

Suppose A is irreducible and aperiodic on V. IfFT-7 < o0, then
lim,_ o mi(n) — m; > 0 for some i.
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Symbolic chains

We let V ={2,3,...} and

a1 Fi=2aie
41730 otherwise

The Perron value of A is 4 and it has left and right eigenvectors:

n /:/:(1,1 3 ... _n )

s 40 y pn—1)

mr=(1,3,8,...,(L+n)22 ).

|- r =00 = not positive recurrent according to Kitchens '98. In fact,
this chain is classified as transitive.

However, we know that m;(n) = P(Q, =) > 0.
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Operator viewpoint

Let T = (V, E) be a locally finite, strongly connected and non-partite
directed graph, AV be the probability simplex on the set of vertices and
A be the adjacency matrix of I'. Define

TA
T:AY 5 AV as T(w)= 22
)= w7,
If T(K) C K for some non-empty, compact and convex K C AV, then
there exists a unique w* € K such that lim,_,o T"(wo) = w* for all
wo € AV.

irreducible < strongly connected
aperiodic & non-partite
positive recurrence & compactness
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Compact set

v
¥

We take V = L x Wy instead of {2,3,...} where
m L is the set of all elementary equivalence classes (finite)
m W, is the set of all tail configurations for a fixed k (countable)

The subset for the stationary distribution for |¢1] (or 7 as lim, Q,) :

. i .
n:= {WGAV D Puw(lr] =1) = 51 for/—2,3,...},
and the convex, compact set in the theorem:

Kai={we N : Eu(lonl-[0) < A(K)} € A,
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