
Counting Permutation Classes 
Quickly Using Tilings

Jay Pantone 
Marquette University

Permutation Patterns 2025 
July 10, 2025

joint work with Christian Bean



Inspiration

‣ computed the number of 1324-
avoiding permutations up to length 50

‣ asymptotic analysis 



‣ computed the number of 1324-
avoiding permutations up to length 50

‣ asymptotic analysis 

Inspiration



‣ computed the number of 1324-
avoiding permutations up to length 50

‣ asymptotic analysis 

Inspiration



Based on the first 50 terms, they predict the exponential growth rate for the 
number of 1324-avoiding permutations is ~11.600.

Inspiration



Based on the first 50 terms, they predict the exponential growth rate for the 
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size  is the th Catalan number, so their 
exponential growth rate is 4.

n n

Inspiration



Based on the first 50 terms, they predict the exponential growth rate for the 
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size  is the th Catalan number, so their 
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link, 
and the counts we care about are the ones with zero links.

Inspiration



Based on the first 50 terms, they predict the exponential growth rate for the 
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size  is the th Catalan number, so their 
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link, 
and the counts we care about are the ones with zero links.

So, they compute 1324-avoiding permutations to length , we only need 
link patterns with at most  links.

n
n/2

Inspiration



Based on the first 50 terms, they predict the exponential growth rate for the 
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size  is the th Catalan number, so their 
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link, 
and the counts we care about are the ones with zero links.

So, they compute 1324-avoiding permutations to length , we only need 
link patterns with at most  links.

n
n/2

That makes this a  algorithm!o((4 + ϵ)n/2) = o((2 + ϵ)n)

Inspiration



Based on the first 50 terms, they predict the exponential growth rate for the 
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size  is the th Catalan number, so their 
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link, 
and the counts we care about are the ones with zero links.

So, they compute 1324-avoiding permutations to length , we only need 
link patterns with at most  links.

n
n/2

That makes this a  algorithm!o((4 + ϵ)n/2) = o((2 + ϵ)n)

Inspiration



It always bugged me that I didn’t see the “big picture” of the paper.

Inspiration



It always bugged me that I didn’t see the “big picture” of the paper.

I downloaded the paper onto my iPad to re-read on the flight home 
from Permutation Patterns 2023 in Dijon.

Inspiration



It always bugged me that I didn’t see the “big picture” of the paper.

I downloaded the paper onto my iPad to re-read on the flight home 
from Permutation Patterns 2023 in Dijon.

By the time I landed, I understood the big picture, which gave me the 
idea for this project:

Inspiration



It always bugged me that I didn’t see the “big picture” of the paper.

I downloaded the paper onto my iPad to re-read on the flight home 
from Permutation Patterns 2023 in Dijon.

By the time I landed, I understood the big picture, which gave me the 
idea for this project:

Counting permutations avoiding any set of patterns by 
automatically discovering the “link patterns” for that set.

Inspiration
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Some permutation classes have a “finite insertion encoding” — if you write 
down the stages of the insertion encodings of every permutation in the 
class, and simplify them in certain ways, you end up with a finite set.

(Finding Regular Insertion Encodings for Permutation Classes, Vatter, 2012)

Example: Av(132, 231)

This is the set of permutations made of up a decreasing sequence followed 
by an increasing sequence
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The “link diagrams” in the 1324 paper are precisely encoding the 
relationships between slots — often you cannot fill slot A until after slot B 
has been closed.

That means they can follow the link diagrams to know exactly what the 
transitions between simplified slot configurations are. 

Huge computational savings because the simplification is an expensive 
operation in the original insertion encoding.
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Insertion Encoding
So the “big picture”, translated into the insertion encoding, is that the paper 
uses a very efficient construction to generate the insertion encoding finite 
state machine for all states with up to 25 slots.

It also uses some extremely clever theoretical and optimization tricks to 
reach length 50!
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Generalizing to Any Permutation Class

In the rest of this talk, I’ll explain how to generalize this to any 
permutation class.

Big idea: We use a structure that automatically discovers and tracks the 
relationships between slots.

It simultaneously derives the right “link pattern” analogues and uses 
them to count.
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essentially a data structure that represents a set of (gridded) permutations.

Gridded permutation = a permutation with grid lines draw so that entries are 
split into cells of a grid
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Tilings

A tiling is a grid with 
obstructions:  gridded permutations that must be avoided 
requirements: gridded permutations that must be contained

A tiling represents the set of all gridded permutations that can be drawn on 
that grid that avoid all of the obstructions and contain all of the 
requirements.
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Tilings

It is a fast operation to “place an entry into a slot” on a tiling and simplify 
the obstructions.

We can generate the insertion encoding graph using tilings instead of slot 
configurations!

Each tiling represents a set of permutations just like each insertion encoding  
configurations represents the set of permutations that can be generated 
from that configuration.

No expensive checks, just like the link patterns in 1324, but we didn’t need to 
first describe and prove any structure by hand.



Tilings

We can remove the points and only use the top row because the obstructions 
already keep track of where the bad patterns can show up.

Two states are isomorphic when they are simply the same tiling. For the 
original insertion encoding this was a very expensive check.
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None of this is specific to 1324, and we can do it with any set of 
forbidden patterns.



Tilings



Tilings



Tilings



Tilings



Tilings



Tilings



Tilings



Results

Very preliminary — still improving the parallel implementation 

Definitely does not beat 50 terms of Av(1324)!

Since this is general purpose, it doesn’t “know” a structural theorem 
like the link patterns ahead of time.

But, I can get to 30s on my laptop and into the 40s on a larger machine.



Time to compute Av(1324) in seconds
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Results

One is already solved, one independently counted 
up to length 38, and this paper computed the 
other 14 up to lengths between 23 and 27.

Efficiency varies a lot between classes. The number 
of different tilings computed could be exponential, 
polynomial, even linear.

Our method looks like to get most of the 14 up to 
length 30, some up to 35 or 40.

There are 120 classes of the form Av( ) where 
. They split into 16 different groups based on 

their counting sequence.

β
|β | = 5



Bounds on the Growth Rate
In addition to the counting sequences, you can also turn these truncated 
insertion encoding trees into rigorous lower bounds for the growth rate 
of the class. (maybe upper bounds too?)

Av(12453): 
growth rate is known to be 14.6568 
we get a lower bound of 13.3748 by counting up to length 30  

9 + 4 2 ≈

Av(41235): 
Guttmann estimates the growth rate is  13.703 using 27 terms  
we get a lower bound of 12.1619 by counting up to length 27  

≈



Other Avenues

We have adapted this to count pattern-avoiding involutions, and 
applied it to the patterns 1324 and 4231. Forthcoming paper with 
Christian Bean and Tony Guttmann.

Christian and I have also adapted it to count pattern-avoiding inversion 
sequences. You can really do this for any combinatorial object that you 
can make a tiling-like object for.



Thank you!


