
Counting Permutation Classes
Quickly Using Tilings

Jay Pantone
Marquette University

Permutation Patterns 2025
July 10, 2025

joint work with Christian Bean

Inspiration

‣ computed the number of 1324-
avoiding permutations up to length 50

‣ asymptotic analysis

‣ computed the number of 1324-
avoiding permutations up to length 50

‣ asymptotic analysis

Inspiration

‣ computed the number of 1324-
avoiding permutations up to length 50

‣ asymptotic analysis

Inspiration

Based on the first 50 terms, they predict the exponential growth rate for the
number of 1324-avoiding permutations is ~11.600.

Inspiration

Based on the first 50 terms, they predict the exponential growth rate for the
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size is the th Catalan number, so their
exponential growth rate is 4.

n n

Inspiration

Based on the first 50 terms, they predict the exponential growth rate for the
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size is the th Catalan number, so their
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link,
and the counts we care about are the ones with zero links.

Inspiration

Based on the first 50 terms, they predict the exponential growth rate for the
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size is the th Catalan number, so their
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link,
and the counts we care about are the ones with zero links.

So, they compute 1324-avoiding permutations to length , we only need
link patterns with at most links.

n
n/2

Inspiration

Based on the first 50 terms, they predict the exponential growth rate for the
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size is the th Catalan number, so their
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link,
and the counts we care about are the ones with zero links.

So, they compute 1324-avoiding permutations to length , we only need
link patterns with at most links.

n
n/2

That makes this a algorithm!o((4 + ϵ)n/2) = o((2 + ϵ)n)

Inspiration

Based on the first 50 terms, they predict the exponential growth rate for the
number of 1324-avoiding permutations is ~11.600.

The number of link patterns of size is the th Catalan number, so their
exponential growth rate is 4.

n n

BUT: each operation adds at most one link, and takes away at most one link,
and the counts we care about are the ones with zero links.

So, they compute 1324-avoiding permutations to length , we only need
link patterns with at most links.

n
n/2

That makes this a algorithm!o((4 + ϵ)n/2) = o((2 + ϵ)n)

Inspiration

It always bugged me that I didn’t see the “big picture” of the paper.

Inspiration

It always bugged me that I didn’t see the “big picture” of the paper.

I downloaded the paper onto my iPad to re-read on the flight home
from Permutation Patterns 2023 in Dijon.

Inspiration

It always bugged me that I didn’t see the “big picture” of the paper.

I downloaded the paper onto my iPad to re-read on the flight home
from Permutation Patterns 2023 in Dijon.

By the time I landed, I understood the big picture, which gave me the
idea for this project:

Inspiration

It always bugged me that I didn’t see the “big picture” of the paper.

I downloaded the paper onto my iPad to re-read on the flight home
from Permutation Patterns 2023 in Dijon.

By the time I landed, I understood the big picture, which gave me the
idea for this project:

Counting permutations avoiding any set of patterns by
automatically discovering the “link patterns” for that set.

Inspiration

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

right placement

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

right placement

right placement

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

right placement

right placement

fill

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

right placement

right placement

fill

left placement

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

right placement

right placement

fill

left placement

fill

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

right placement

right placement

fill

left placement

fill

left placement

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Encodes how a permutation can be built from bottom to top.

middle placement

middle placement

right placement

right placement

fill

left placement

fill

left placement

fill

(The Insertion Encoding of Permutations,
Albert, Linton, and Ruškuc, 2005)

Insertion Encoding
Some permutation classes have a “finite insertion encoding” — if you write
down the stages of the insertion encodings of every permutation in the
class, and simplify them in certain ways, you end up with a finite set.

(Finding Regular Insertion Encodings for Permutation Classes, Vatter, 2012)

Insertion Encoding
Some permutation classes have a “finite insertion encoding” — if you write
down the stages of the insertion encodings of every permutation in the
class, and simplify them in certain ways, you end up with a finite set.

(Finding Regular Insertion Encodings for Permutation Classes, Vatter, 2012)

Example: Av(132, 231)

This is the set of permutations made of up a decreasing sequence followed
by an increasing sequence

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Av(132, 231)

Insertion Encoding
Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.

Insertion Encoding
Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.

Insertion Encoding
Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.

Insertion Encoding
Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.

Insertion Encoding
Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.

Insertion Encoding
Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.

Insertion Encoding
Even if a class has an infinite insertion encoding, you can still use it to count
the number of permutations in a class up to some point.

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

Insertion Encoding

The “link diagrams” in the 1324 paper are precisely encoding the
relationships between slots — often you cannot fill slot A until after slot B
has been closed.

Insertion Encoding

The “link diagrams” in the 1324 paper are precisely encoding the
relationships between slots — often you cannot fill slot A until after slot B
has been closed.

That means they can follow the link diagrams to know exactly what the
transitions between simplified slot configurations are.

Insertion Encoding

The “link diagrams” in the 1324 paper are precisely encoding the
relationships between slots — often you cannot fill slot A until after slot B
has been closed.

That means they can follow the link diagrams to know exactly what the
transitions between simplified slot configurations are.

Huge computational savings because the simplification is an expensive
operation in the original insertion encoding.

Insertion Encoding
So the “big picture”, translated into the insertion encoding, is that the paper
uses a very efficient construction to generate the insertion encoding finite
state machine for all states with up to 25 slots.

Insertion Encoding
So the “big picture”, translated into the insertion encoding, is that the paper
uses a very efficient construction to generate the insertion encoding finite
state machine for all states with up to 25 slots.

It also uses some extremely clever theoretical and optimization tricks to
reach length 50!

Generalizing to Any Permutation Class

In the rest of this talk, I’ll explain how to generalize this to any
permutation class.

Generalizing to Any Permutation Class

In the rest of this talk, I’ll explain how to generalize this to any
permutation class.

Big idea: We use a structure that automatically discovers and tracks the
relationships between slots.

Generalizing to Any Permutation Class

In the rest of this talk, I’ll explain how to generalize this to any
permutation class.

Big idea: We use a structure that automatically discovers and tracks the
relationships between slots.

It simultaneously derives the right “link pattern” analogues and uses
them to count.

Tilings

Automatic enumeration of permutation
classes (and other objects)

Discovers (rigorously) combinatorial
specifications, which can be turned into
generating functions and polynomial-time
counting algorithms.

Tilings

Automatic enumeration of permutation
classes (and other objects)

Discovers (rigorously) combinatorial
specifications, which can be turned into
generating functions and polynomial-time
counting algorithms.

Tilings

Automatic enumeration of permutation
classes (and other objects)

Discovers (rigorously) combinatorial
specifications, which can be turned into
generating functions and polynomial-time
counting algorithms.

Tilings

Automatic enumeration of permutation
classes (and other objects)

Discovers (rigorously) combinatorial
specifications, which can be turned into
generating functions and polynomial-time
counting algorithms.

Tilings
One of the fundamental tools for Combinatorial Exploration is the tiling. It’s
essentially a data structure that represents a set of (gridded) permutations.

Tilings
One of the fundamental tools for Combinatorial Exploration is the tiling. It’s
essentially a data structure that represents a set of (gridded) permutations.

Gridded permutation = a permutation with grid lines draw so that entries are
split into cells of a grid

Tilings
A gridded permutation p contains a gridded permutation q as a pattern if
there is a subsequence of entries of p that are order-isomorphic to q and in
the same cells.

Tilings
A gridded permutation p contains a gridded permutation q as a pattern if
there is a subsequence of entries of p that are order-isomorphic to q and in
the same cells.

Tilings

A tiling is a grid with
obstructions: gridded permutations that must be avoided
requirements: gridded permutations that must be contained

A tiling represents the set of all gridded permutations that can be drawn on
that grid that avoid all of the obstructions and contain all of the
requirements.

Tilings

The tiling represents all gridded permutations on a 2x3 grid with:

‣ exactly one point in the bottom-left cell

‣ no points in the bottom-middle or top-right cells

‣ no 132 pattern in the top left cell

‣ no crossing 21 pattern between the top-left and top-middle cells

‣ contains a 12 pattern in the top-middle cell

Tilings

The tiling represents all gridded permutations on a 2x3 grid with:

‣ exactly one point in the bottom-left cell

‣ no points in the bottom-middle or top-right cells

‣ no 132 pattern in the top left cell

‣ no crossing 21 pattern between the top-left and top-middle cells

‣ contains a 12 pattern in the top-middle cell

Tilings

Tilings
We can generate the insertion encoding graph using tilings instead of slot
configurations!

Tilings
We can generate the insertion encoding graph using tilings instead of slot
configurations!

Each tiling represents a set of permutations just like each insertion encoding
configurations represents the set of permutations that can be generated
from that configuration.

Tilings

It is a fast operation to “place an entry into a slot” on a tiling and simplify
the obstructions.

We can generate the insertion encoding graph using tilings instead of slot
configurations!

Each tiling represents a set of permutations just like each insertion encoding
configurations represents the set of permutations that can be generated
from that configuration.

Tilings

It is a fast operation to “place an entry into a slot” on a tiling and simplify
the obstructions.

We can generate the insertion encoding graph using tilings instead of slot
configurations!

Each tiling represents a set of permutations just like each insertion encoding
configurations represents the set of permutations that can be generated
from that configuration.

No expensive checks, just like the link patterns in 1324, but we didn’t need to
first describe and prove any structure by hand.

Tilings

We can remove the points and only use the top row because the obstructions
already keep track of where the bad patterns can show up.

Two states are isomorphic when they are simply the same tiling. For the
original insertion encoding this was a very expensive check.

Tilings

None of this is specific to 1324, and we can do it with any set of
forbidden patterns.

Tilings

Tilings

Tilings

Tilings

Tilings

Tilings

Tilings

Results

Very preliminary — still improving the parallel implementation

Definitely does not beat 50 terms of Av(1324)!

Since this is general purpose, it doesn’t “know” a structural theorem
like the link patterns ahead of time.

But, I can get to 30s on my laptop and into the 40s on a larger machine.

Time to compute Av(1324) in seconds

Length Permlab Permuta Kuszmaul Inoue this work
10 0.53 1.20 0.01 0.02 0.28
11 1.13 8.23 0.05 0.02 0.41
12 5.69 58.40 0.21 0.03 0.63
13 36.5 1.32 0.09 0.91
14 270 8.80 0.20 1.44
15 61.6 0.41 2.11
16 438.5 0.95 3.39
17 2.54 5.43
18 6.72 10.3
19 16.6 17.6
20 40.2 34.9
21 93.8 61.6
22 218 124

23 512
~26GB memory 255

24 938
~50GB memory

526
~1GB memory

25 2539  
~75GB memory

941
~2GB memory

26 1857
~3GB memory

Time to compute Av(1324) in seconds

Length Permlab Permuta Kuszmaul Inoue this work
10 0.53 1.20 0.01 0.02 0.28
11 1.13 8.23 0.05 0.02 0.41
12 5.69 58.40 0.21 0.03 0.63
13 36.5 1.32 0.09 0.91
14 270 8.80 0.20 1.44
15 61.6 0.41 2.11
16 438.5 0.95 3.39
17 2.54 5.43
18 6.72 10.3
19 16.6 17.6
20 40.2 34.9
21 93.8 61.6
22 218 124

23 512
~26GB memory 255

24 938
~50GB memory

526
~1GB memory

25 2539  
~75GB memory

941
~2GB memory

26 1857
~3GB memory

Time to compute Av(1324) in seconds

Length Permlab Permuta Kuszmaul Inoue this work
10 0.53 1.20 0.01 0.02 0.28
11 1.13 8.23 0.05 0.02 0.41
12 5.69 58.40 0.21 0.03 0.63
13 36.5 1.32 0.09 0.91
14 270 8.80 0.20 1.44
15 61.6 0.41 2.11
16 438.5 0.95 3.39
17 2.54 5.43
18 6.72 10.3
19 16.6 17.6
20 40.2 34.9
21 93.8 61.6
22 218 124

23 512
~26GB memory 255

24 938
~50GB memory

526
~1GB memory

25 2539  
~75GB memory

941
~2GB memory

26 1857
~3GB memory

Time to compute Av(1324) in seconds

Length Permlab Permuta Kuszmaul Inoue this work
10 0.53 1.20 0.01 0.02 0.28
11 1.13 8.23 0.05 0.02 0.41
12 5.69 58.40 0.21 0.03 0.63
13 36.5 1.32 0.09 0.91
14 270 8.80 0.20 1.44
15 61.6 0.41 2.11
16 438.5 0.95 3.39
17 2.54 5.43
18 6.72 10.3
19 16.6 17.6
20 40.2 34.9
21 93.8 61.6
22 218 124

23 512
~26GB memory 255

24 938
~50GB memory

526
~1GB memory

25 2539  
~75GB memory

941
~2GB memory

26 1857
~3GB memory

Time to compute Av(1324) in seconds

Length Permlab Permuta Kuszmaul Inoue this work
10 0.53 1.20 0.01 0.02 0.28
11 1.13 8.23 0.05 0.02 0.41
12 5.69 58.40 0.21 0.03 0.63
13 36.5 1.32 0.09 0.91
14 270 8.80 0.20 1.44
15 61.6 0.41 2.11
16 438.5 0.95 3.39
17 2.54 5.43
18 6.72 10.3
19 16.6 17.6
20 40.2 34.9
21 93.8 61.6
22 218 124

23 512
~26GB memory 255

24 938
~50GB memory

526
~1GB memory

25 2539  
~75GB memory

941
~2GB memory

26 1857
~3GB memory

Time to compute Av(1324) in seconds

Length Permlab Permuta Kuszmaul Inoue this work
10 0.53 1.20 0.01 0.02 0.28
11 1.13 8.23 0.05 0.02 0.41
12 5.69 58.40 0.21 0.03 0.63
13 36.5 1.32 0.09 0.91
14 270 8.80 0.20 1.44
15 61.6 0.41 2.11
16 438.5 0.95 3.39
17 2.54 5.43
18 6.72 10.3
19 16.6 17.6
20 40.2 34.9
21 93.8 61.6
22 218 124

23 512
~26GB memory 255

24 938
~50GB memory

526
~1GB memory

25 2539  
~75GB memory

941
~2GB memory

26 1857
~3GB memory

Results

One is already solved, one independently counted
up to length 38, and this paper computed the
other 14 up to lengths between 23 and 27.

Efficiency varies a lot between classes. The number
of different tilings computed could be exponential,
polynomial, even linear.

Our method looks like to get most of the 14 up to
length 30, some up to 35 or 40.

There are 120 classes of the form Av() where
. They split into 16 different groups based on

their counting sequence.

β
|β | = 5

Bounds on the Growth Rate
In addition to the counting sequences, you can also turn these truncated
insertion encoding trees into rigorous lower bounds for the growth rate
of the class. (maybe upper bounds too?)

Av(12453):
growth rate is known to be 14.6568
we get a lower bound of 13.3748 by counting up to length 30

9 + 4 2 ≈

Av(41235):
Guttmann estimates the growth rate is 13.703 using 27 terms
we get a lower bound of 12.1619 by counting up to length 27

≈

Other Avenues

We have adapted this to count pattern-avoiding involutions, and
applied it to the patterns 1324 and 4231. Forthcoming paper with
Christian Bean and Tony Guttmann.

Christian and I have also adapted it to count pattern-avoiding inversion
sequences. You can really do this for any combinatorial object that you
can make a tiling-like object for.

Thank you!

