Extending Wilf-Equivalence Results Among Partial Shuffles

Matthew Slattery-Holmes

Joint work with Michael Albert and Dominic Searles.

Department of Mathematics University of Otago

Permutation Patterns July 2025

Matt Slattery-Holmes Extending Wilf-Equivalence Results Among Partial Shuffles

- Hamaker, Pawlowski, and Sagan (2019) investigated a certain *quasisymmetric function* indexed by descent sets of permutations in avoidance classes.
- They determined for which subsets of S₃ this function is symmetric and Schur-positive, and provided several conjectures.
- Bloom and Sagan (2020) introduced *partial shuffles* to prove one of these conjectures.

For $\ell \in \mathbb{N}$, let $[\ell] = \{1, 2, \dots, \ell\}$. Pick $a \in [\ell]$ and b with $a + b = \ell$.

Definition

The partial shuffle $\Pi(a, b)$ is the set of permutations of $[\ell]$ where every element except *a* is increasing, *excluding* the strictly increasing permutation $12 \dots \ell$.

Example

```
Let \ell = 5 and a = 3. Then
```

 $\Pi(3,2) = \{1245 \pm 3\} - 12345$ $= \{12453, 12435, 13245, 31245\}$

Examples of partial shuffles

Figure: The five partial shuffles of length 5

Matt Slattery-Holmes Extending Wilf-Equivalence Results Among Partial Shuffles

Theorem (Bloom & Sagan 2019, Albert & Searles & SH 2025+)

If a + b = c + d, then

 $Av(\Pi(a, b))$ is Wilf-equivalent to $Av(\Pi(c, d))$.

- We expand on the existing proof of this result.
- We define an invertible map *S*, which "rotates" elements within an interval in the permutation.
- Iterating S sends permutations in Av(Π(a, b)) to permutations in Av(Π(a - 1, b + 1))

Example of the map S

Example

Consider the permutation $\pi = 5314267$, which avoids $\Pi(4,0) = \{1243, 1423, 4123\}$. It contains $3124, 1324 \in \Pi(3,1)$.

This map is

- Injective
- Invertible

Matt Slattery-Holmes Extending Wilf-Equivalence Results Among Partial Shuffles

Theorem (Albert & Searles & SH, 2025+)

The length of the longest decreasing subpermutation in both π and $S(\pi)$ is the same.

Corollary

If a + b = c + d, then $\Pi(a, b) \cup \delta_k$ and $\Pi(c, d) \cup \delta_k$ are Wilf-equivalent.

Theorem (Huczynska & Vatter, 2006, Albert et al, 2013.)

Avoiding arbitrarily long permutations of these forms ensures the class is enumerated by a polynomial for sufficiently large n.

Vatter and Homberger (2016) introduce *peg permutations*, a way of decorating permutations which may be inflated with arbitrarily long monotone permutations, single elements, or empty permutations. Useful to enumerate polynomial classes!

Enumerative Result

Proposition (Albert & Searles & SH 2025+)

For $a + b = \ell$ and $k \ge 1$, $\#Av_n(\Pi(a, b) \cup \delta_k)$ is a polynomial in *n*, with degree $(\ell - 2)(k - 2)$.

Sketch of proof:

- Consider a +-irreducible peg permutation representing elements of the class Av(Π(ℓ, 0) ∪ δ_k).
- Can *only* arbitrarily inflate LR maxima which are above all non-LR maxima (*maximal LR maxima*).
- Non-LR maxima must avoid δ_{k-1} and also $\iota_{\ell-1}$.
- Erdős–Szekeres: at most (k − 2)(ℓ − 2) of these, so at most (k − 2)(ℓ − 2) + 1 arbitrary inflations.
- Upper bound of $(k-2)(\ell-2)$ on degree.
- Show that bound can be achieved.

Figure: A +-irreducible peg permutation $(5^+3^{\bullet}6^+4^{\bullet}7^+1^{\bullet}8^+2^{\bullet}9^+)$ which lies in $Av(\Pi(4,0) \cup \delta_4) = Av(1243, 1423, 4123, 4321)$.

Lemma

The number of sequences $a_1 a_2 \dots a_{k-1} a_k$ of length k such that for all $j \le k$,

$$\sum_{i \le j} a_i < j$$

is given by C_k , the k^{th} Catalan number.

Example

The sequences of length 3 are 000,001,010,011, and 002. $(C_3 = 5)$.

Catalan leading term

Proposition (Albert & Searles & SH 2025+)

For $\ell = a + b \ge 3$:

 $#Av_n(\Pi(a,b)\cup\delta_3)$ has leading term $C_{\ell-2}\binom{n}{\ell-2}$.

Sketch of proof.

- From previous theorem, leading term is $\alpha\binom{n}{\ell-2}$.
- Count peg permutations as in previous theorem, which contribute to maximal degree term (i.e. have (ℓ − 2)(k − 2) + 1 := ℓ − 1 maximal LR maxima.
- Separated by $\ell 2$ increasing elements.
- Number of ways to place *non-maximal* LR maxima gives the sequence from the previous lemma.

Let $\ell = 5$. Then, consider the ways to create a peg permutation for the class $Av(\Pi(5,0) \cup \delta_3)$.

Figure: Generic element in $Av(\Pi(5,0) \cup \delta_3) = Av(12354, 12534, 15234, 51234, 321).$

Conjecture (Albert & Searles & SH 2025+)

For $\ell = a + b \ge 3$ and $n > \ell$,

$$\# Av_n(\Pi(a,b)\cup \delta_3) = C_{\ell-2}\binom{n}{\ell-2} - \sum_{1\leq h < n-2} T_{\ell-2,h}\binom{n}{\ell-3-h},$$

where $T_{p,q} = \frac{q\binom{2p-q}{p}}{2p-q}$ (OEIS sequence A033184, Transposed Catalan Triangle).

What about riffle-shuffles?

Definition

Let $\rho \in \mathfrak{S}_a$ and $\sigma \in \mathfrak{S}_b$. Then $\rho \sqcup \sigma$ is the set of permutations $\pi \in \mathfrak{S}_{a+b}$ such that π consists of two subpermutations, which are order isomorphic to ρ and σ .

Example

Shuffles of 123 with 21:

12354, 12534, 15234, 51234, 12543, 15243, 51243, 15423, 51423, 51423, 54123.

Definition

We define the shuffle of two avoidance class bases Π_1 and Π_2 to be

$$\Pi_1 \sqcup \Pi_2 = \{\pi \sqcup \sigma : \pi \in \Pi_1, \sigma \in \Pi_2\}$$

Theorem (Albert & Searles & SH 2025+)

Let A(x) and B(x) be the exponential generating functions that count elements of Av(A) and Av(B) respectively. Then, the exponential generating function for $Av(C) := Av(A \sqcup B)$ is

$$A(x) + B(x) + (x-1)A(x)B(x).$$

Example

Av(12) has exponential generating function e^x and Av(123, 132) has e.g.f $\frac{e^{2x}+1}{2}$. so

Av(12
$$\sqcup$$
 {123, 132}) = $e^x + \frac{e^{2x} + 1}{2} + \frac{(x-1)(e^{3x} + e^x)}{2}$.

Sketch of proof

- $\operatorname{Av}(A), \operatorname{Av}(B) \subset \operatorname{Av}(A \sqcup B).$
- If smallest *k* elements in Av(A), add an element to get something not in Av(A) in $(k + 1)a_k a_{k+1}$ ways.
- Above this, b_{n-k-1} subpermutations, position these in $\binom{n}{n-k-1} = \binom{n}{k+1}$ ways.
- Summing over k gives

$$c_n = a_n + \sum_{k=0}^{n-1} ((k+1)a_k - a_{k+1})b_{n-k-1} \binom{n}{k+1}.$$

• Divide through by *n*!, distribute denominator of binomial term:

$$\frac{c_n}{n!} = \frac{a_n}{n!} + \sum_{k=0}^{n-1} \left(\frac{a_k}{k!} - \frac{a_{k+1}}{(k+1)!} \right) \frac{b_{n-k-1}}{(n-k-1)!}.$$

A big thank you to the organisers. Attending this conference was made possible with funding from the New Zealand Mathematical Society and the University of Otago.

Questions?