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Introduction



Definition
A stack is a LIFO (last-in, first-out) sorting device with push and
pop operations.

The permutation π = π1π2 . . . πn can be sorted (that is, by
applying push and pop operations one can output the identity
123 . . . n) exactly if π avoids 231 (Knuth).
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A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.

Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

Figure 1: Sorting 213654 with a pop stack

4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

Figure 1: Sorting 213654 with a pop stack

4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

213654

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

2

13654

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

2
1

3654

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

12 3654

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

3

12 654

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

123 654

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

6

123 54

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

6
5

123 4

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
whenever a pop operation occurs, every entry in the pop stack is
popped immediately.

6
5
4

123

Figure 1: Sorting 213654 with a pop stack
4



A restricted version of a stack that has received more attention
recently is a pop stack, first introduced by Avis and Newborn in
1981.
Definition
A pop stack has the same push and pop operations as a stack, but
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Permutations sortable by a single pop stack are exactly those that
avoid 231 and 312, also known as the layered permutations.

Figure 2: The layered permutation π = 543216987
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Sorting with a pop stack with a bypass



We introduce a natural additional operation to the pop stack
called a bypass allowing entries to skip the pop stack.

Figure 3: Sorting 615423 with a pop stack with a bypass
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We introduce a natural additional operation to the pop stack
called a bypass allowing entries to skip the pop stack.
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Figure 3: Sorting 615423 with a pop stack with a bypass
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Theorem
The permutations sortable by pop stack with a bypass form a class
with basis {231, 4213}.

The enumeration of these sortable permutations is shown by
Atkinson to be the odd indexed Fibonacci numbers, namely
|Avn(231, 4213)| = F2n−1 where we take the liberty of defining
F−1 = 1.

However, we can give an alternate proof of this enumeration and in
the process construct a bijection between these sortable
permutations and a restricted set of Motzkin paths.
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1 S := ∅;
2 i := 1;
3 while i ≤ n do
4 if S = ∅ or πi = TOP(S)− 1 then
5 PUSH;
6 else if πi < TOP(S)− 1 then
7 BYPASS;
8 else
9 POP;

10 PUSH;
11 i := i + 1;
12 POP;

Algorithm 1: PSB (S is the pop stack; TOP(S) is the current
top element of the pop stack; π = π1 · · ·πn is the input).
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By this algorithm, each element of the input causes one option in
the loop to occur which translate respectively to the following
components of a Motzkin Path:

Push: Up/Northeast step
Bypass: Horizontal/East step
Pop, then push: Down/Southeast steps until reaching the
horizontal axis followed by a single Up/Northeast step

Note the final pop of the popstack will also induce
Down/Southeast steps until reaching the horizontal axis.
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For example, we get the following Motzkin word by sorting 312645:
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For example, we get the following Motzkin word by sorting 312645:
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For example, we get the following Motzkin word by sorting 312645:
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For example, we get the following Motzkin word by sorting 312645:

123456

UHUDDUHUDD
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The Motzkin paths that sortable permutations of size n correspond
to are those with exactly n total Up and Horizontal steps which:

1. Begin with an up step.
2. End with a down step.
3. Are such that any down step must be followed by another

down step until the horizontal axis is reached.
4. Down steps are never adjacent to horizontal steps.
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The algorithm also can be used to describe the sortable
permutations uniquely as ternary words where

Push: 0
Bypass: 1
Pop, then push: 2

So,

Sorting words begin with 0

Sorting words end with 0 or 2
Sorting words avoid the consecutive word 12
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One can describe the allowable words using the regular expression
0( 0 | 2 | 1+ 0 )∗.

Letting Mn be the number of sortable permutations of length n,
these words satisfy the recurrence

M0 = 1
M1 = 1

Mn = 2Mn−1 +
n−2∑
i=1

Mi for n ≥ 2

which makes Mn match the recurrence for F2n−1 with F−1 defined
as 1.
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The pop stack with a bypass map



Define the map on permutations by pop stack with a bypass
algorithm as PSB.

Proposition
Let π, σ be permutations such that PSB(π) = σ. If m is a
left-to-right maximum of π, then m is a left-to-right maximum of
σ as well.

Why? Because PSB does not create new inversions.
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426513

Figure 4: Applying PSB to 426513 to get PSB(426513) = 241356.
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Figure 4: Applying PSB to 426513 to get PSB(426513) = 241356.
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Let π be a permutation of size n. Notice if σ = PSB(π), then
σn = n.

Suppose that σ = σ1σ2 · · ·σn = αµk, where µk is the maximum
suffix of consecutive left-to-right maxima of σ (and α is the
remaining prefix). Considering each entry m in µk as the start of
the suffix and continuing recursively, we can construct all
preimages of σ under PSB.
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Consider the example where PSB(426513) = 241356 = σ.

First, remove the suffix µk of left-to-right maxima starting with m.
When σ = 241356, µ2 = 56. Consider m = 5.

Then reinsert the removed elements back into the remaining
permutation in all possible ways, according to the following rules:

• the elements are reinserted in decreasing order;
• the maximum (i.e. n) is inserted to the immediate right of

one of the remaining left-to-right maxima of σ or at the
beginning of σ;

• the minimum (i.e. m) is inserted to the right of m − 1.

When σ = 241356, we insert n = 6 immediately af-
ter 2 or 4 or at the beginning and insert m = 5 after m−1 = 4 to get
246135, 246153, 246513, 264135, 264153, 264513, 624135, 624153, 624513.
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Consider the example where PSB(426513) = 241356 = σ.

So far we have:
246135, 246153, 246513, 264135, 264153, 264513, 624135, 624153, 624513.

For each of these permutations, consider the prefix of all elements
strictly before n and (recursively) continue to compute all possible
preimages.

We get: 246135, 426135, 246153, 426153, 246513, 426513,
264135, 264153, 264513, 624135, 624153, 624513.

Using the same process with m = n = 6, we get the last preimages
as 245136, 425136.
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Figure 5: Computing one preimage of σ = αµk when m is the first (i.e.
smallest) element of µk.
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Two pop stacks in parallel with a bypass



For this question, we first considered an optimal algorithm for
sorting permutations that could be sorted by a machine consisting
of two pop stacks in parallel with a bypass.
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1 S1, S2,O := ∅;
2 i := 1;
3 while i ≤ n do
4 if πi = TOP(S1)− 1 then
5 PUSH1;
6 else if πi = TOP(S2)− 1 then
7 PUSH2;
8 else if S1 = ∅ then
9 PUSH1;

10 else if S2 = ∅ then
11 PUSH2;
12 else if πi < max(TOP(S1)− 1, TOP(S2)− 1) then
13 BYPASS;
14 else
15 if TOP(S1) < TOP(S2) then
16 POP1;
17 if πi = TOP(S2)− 1 then
18 PUSH2;
19 else
20 PUSH1;

21 else
22 POP2;
23 if πi = TOP(S1)− 1 then
24 PUSH1;
25 else
26 PUSH2;

27 if S1 = ∅ then
28 POP2;
29 else if S2 = ∅ then
30 POP1;
31 else if TOP(S1) < TOP(S2) then
32 POP1;
33 POP2;
34 else
35 POP2;
36 POP1;
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Proposition
The class of permutations sortable by two pop stacks in parallel
with a bypass is

Av(2341, 25314, 42513, 42531, 45213, 45231, 52314, 642135, 642153).

The inverse of the above class (i.e. the class whose basis is the set
of inverses of the above permutations) has a regular insertion
encoding (Vatter). Thus it is possible to deduce its rational
generating function using the Combinatorial Exploration framework
(Bean, Eliasson, Magnusson, Nadeau, Pantone, Ulfarsson) and
(Albert, Bean, Claesson, Nadeau, Pantone, and Ulfarsson):

(1 − x)(1 − 2x)(1 − 4x)
1 − 8x + 20x2 − 18x3 + 3x4 .

The sequence corresponding to the sortable permutations of size n
begins 1, 2, 6, 23, 97, 418, 1800, 7717, 32969, 140558, . . .
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More pop stacks in parallel with a bypass



Following the method of Atkinson and Sack, we are able to prove:

Theorem
There is a finite set of permutations Bk such that a permutation

π is sortable by k pop stacks in parallel with a bypass if and only if
π ∈ Av (Bk).

Also, using the same insertion encoding method (with one extra
slot) for pop stacks without a bypass (S and Vatter), we have:

Theorem
For any positive integer k, the set of permutations sortable by k
pop stacks in parallel with a bypass has a rational generating
function.

23
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Conjecture
Let an be the number of simple permutations of length n which are
sortable by a sorting machine consisting of two pop stacks in
parallel where entries are allowed to bypass the pop stacks. Then,

an =



1 if n = 0
1 if n = 1
2 if n = 2
F2n−5 − 1 if n ≥ 3 is odd
F2n−5 if n > 3 is even

where Fn is the n-th Fibonacci number.
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