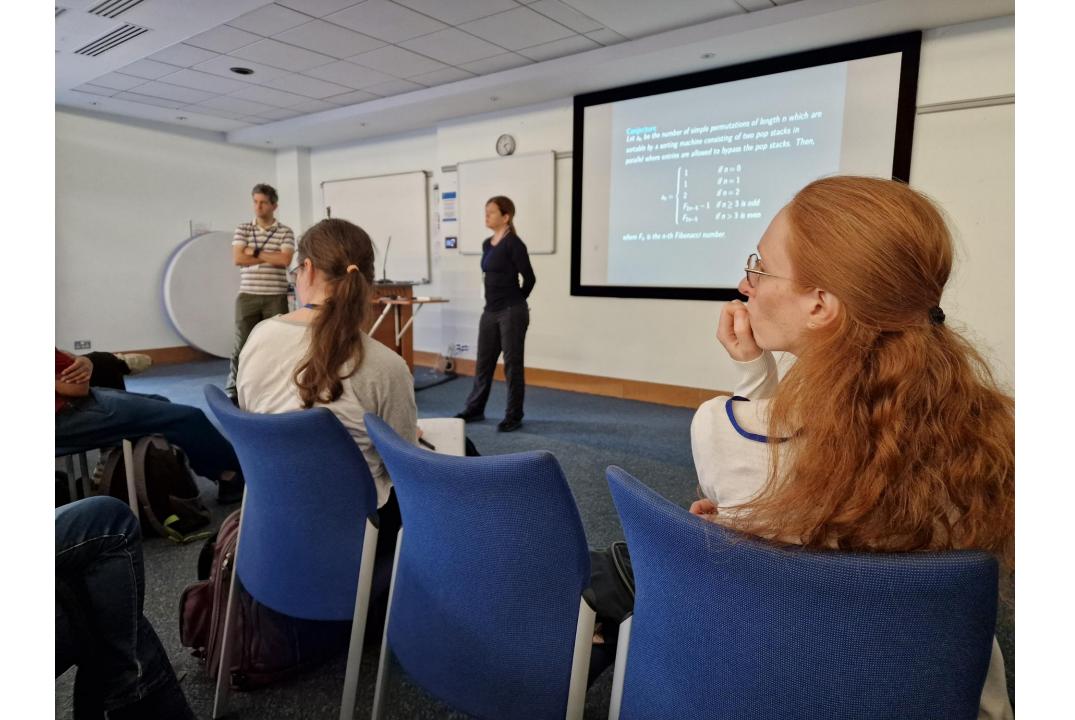
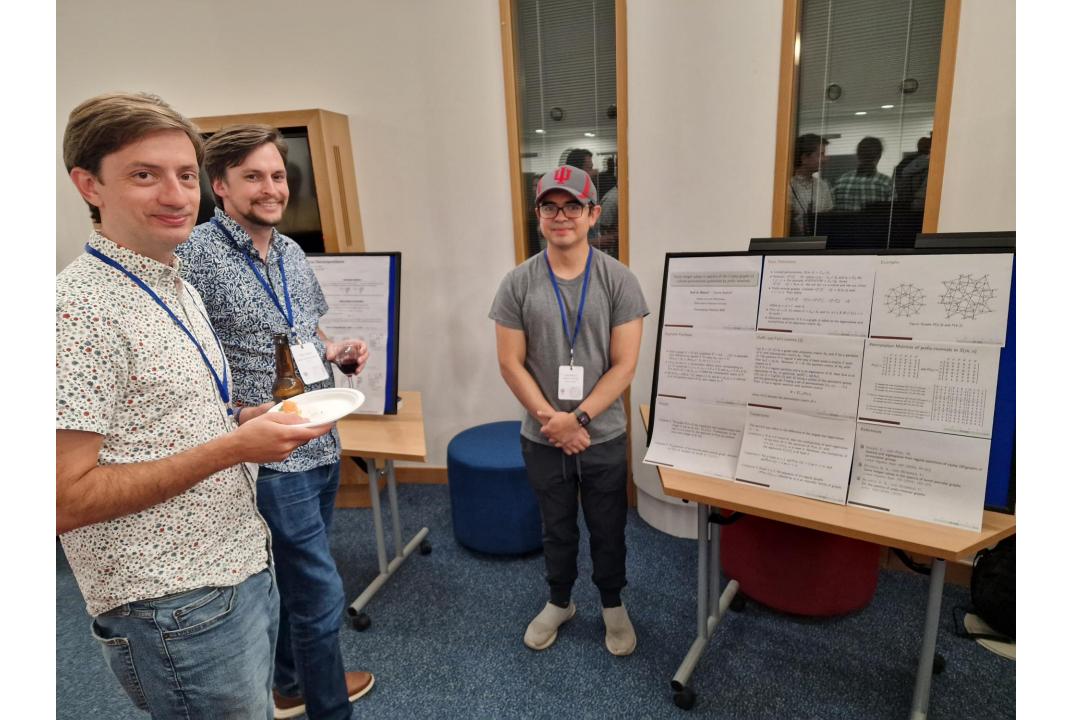
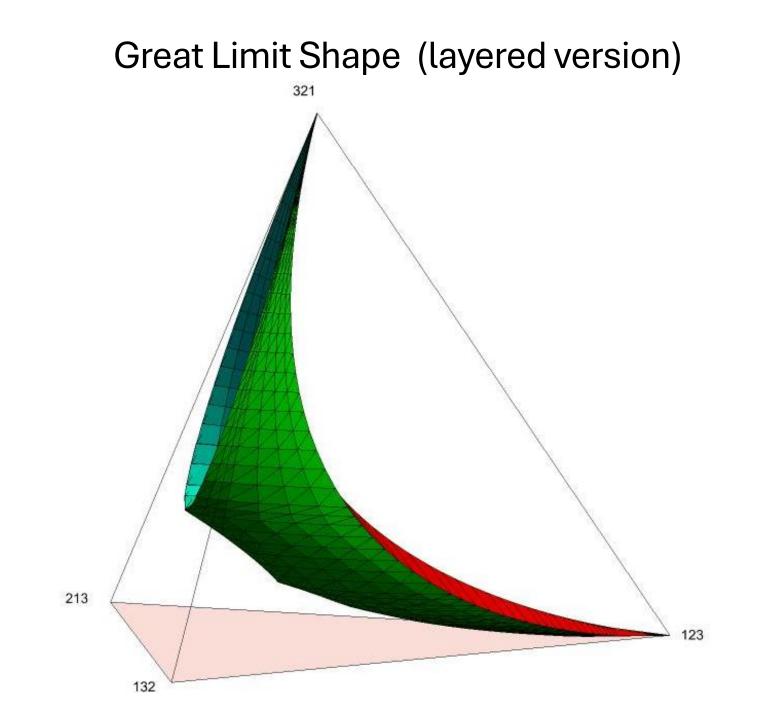
Joint Packing Densities and the Great Limit Shape

Permutation Patterns St Andrews, July 10, 2025

Walter Stromquist Bryn Mawr College mail@walterstromquist.com







Joint Work

This talk includes joint work by

Sergi Elizalde,

Mark Noy,

Anna de Mier.

Shoutouts: Miles Jones Lara Pudwell

Another Source: Permutations with fixed pattern densities
 Richard Kenyon, Daniel Král', Charles Radin, Peter Winkler
 Random Structures & Algorithms 56(1) Jan. 2020

Packing Density

Pick a pattern, say $\sigma = 132$. The *packing density* of 132 in a permutation π is

$$δ_{132}(π) = fraction of 3-term subsequences in π$$
that have order type 132.

What values can occur?

Packing Density

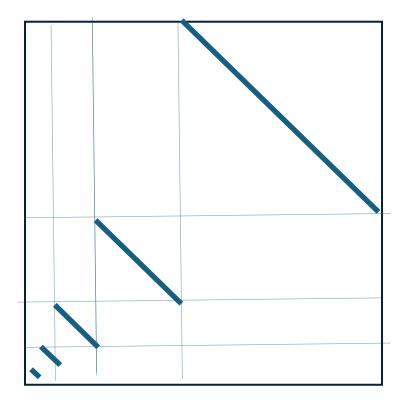
Pick a pattern, say $\sigma = 132$. The *packing density* of 132 in a permutation π is δ_{132} (π) = fraction of 3-term subsequences in π that have order type 132.

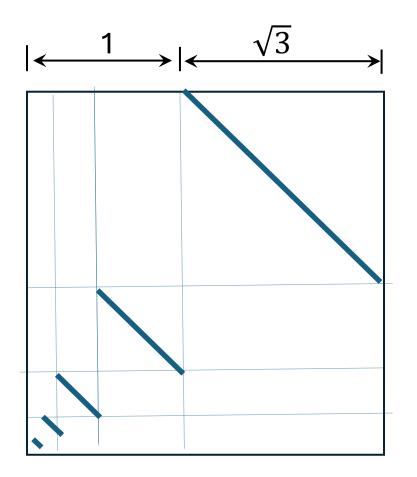
What values can occur?

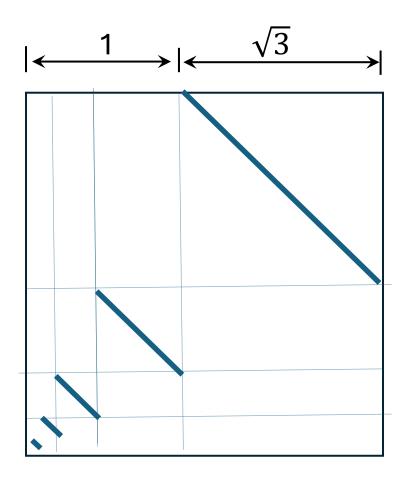
We care about the limit of large π , so we want to know what values $\,x\,$ can occur as

$$\lim_{i\to\infty}\delta_{132}(\pi_i)$$

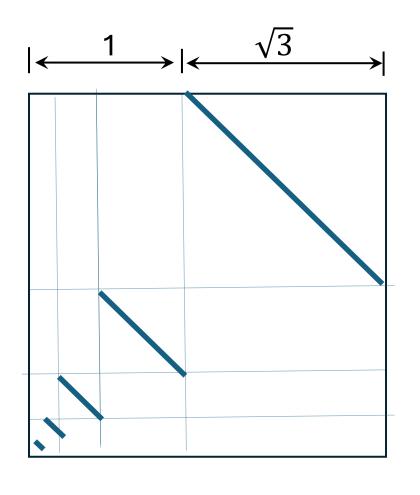
for a sequence of permutations π_1, π_2, \dots







$$\delta_{132}(\pi) = 2\sqrt{3} - 3 \approx 0.464 \dots$$



$$\delta_{132}(\pi) = 2\sqrt{3} - 3 \approx 0.464$$

 $\delta_{321}(\pi) = \frac{3}{2} - \sqrt{3} \approx 0.268$

Which vectors

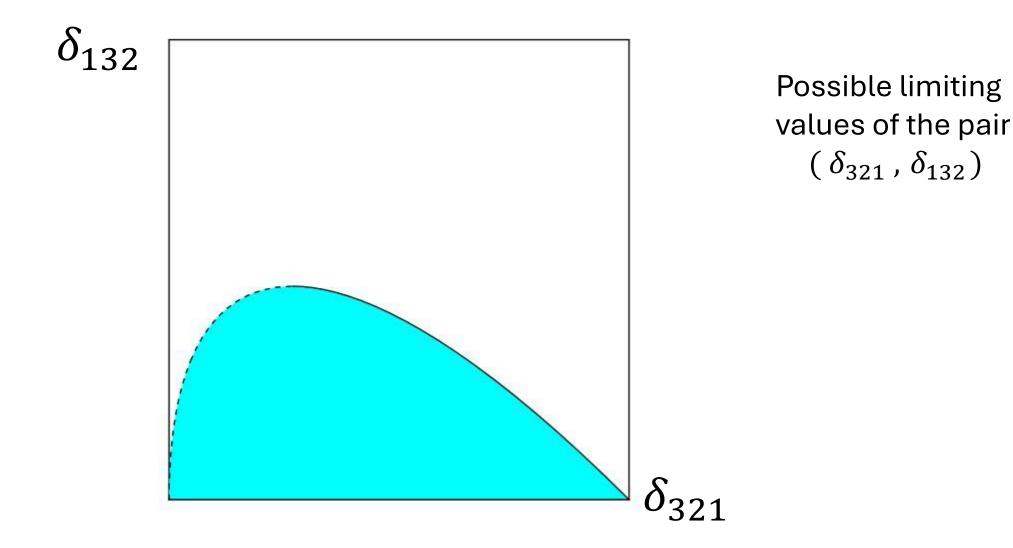
$$v = (\delta_{321}, \delta_{132}) \in \mathbb{R}^2$$

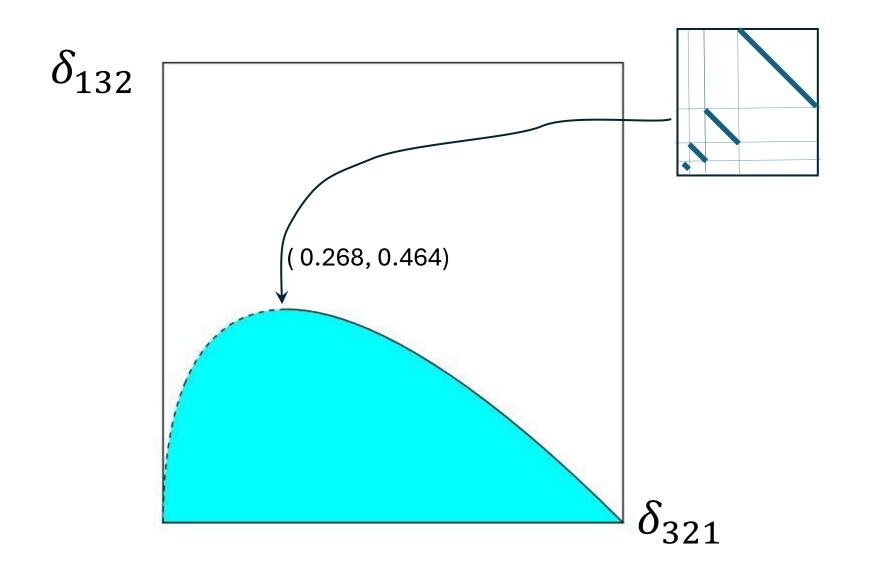
can occur as a limit of vectors

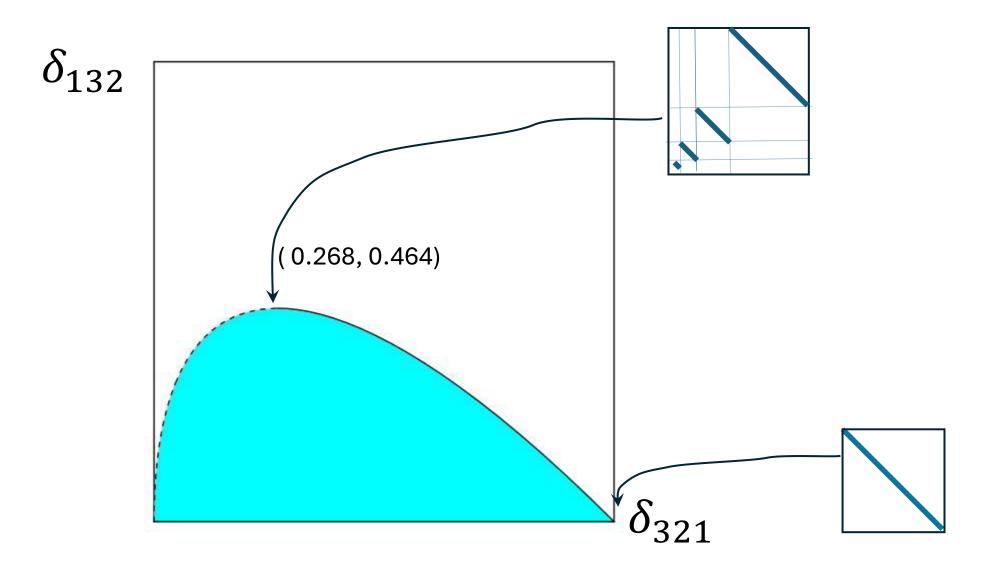
 $(\delta_{321}(\pi_i), \delta_{132}(\pi_i))$

for a sequence of permutations π_1 , π_2 , π_3 , ... of increasing size?

Call the answer Π (321, 132). It is a compact subset of R^2 .









Every point on this boundary maximizes a function of the form

 $\delta_{132} + k \, \delta_{321}$

On the downward-sloping part of the curve, k is non-negative.

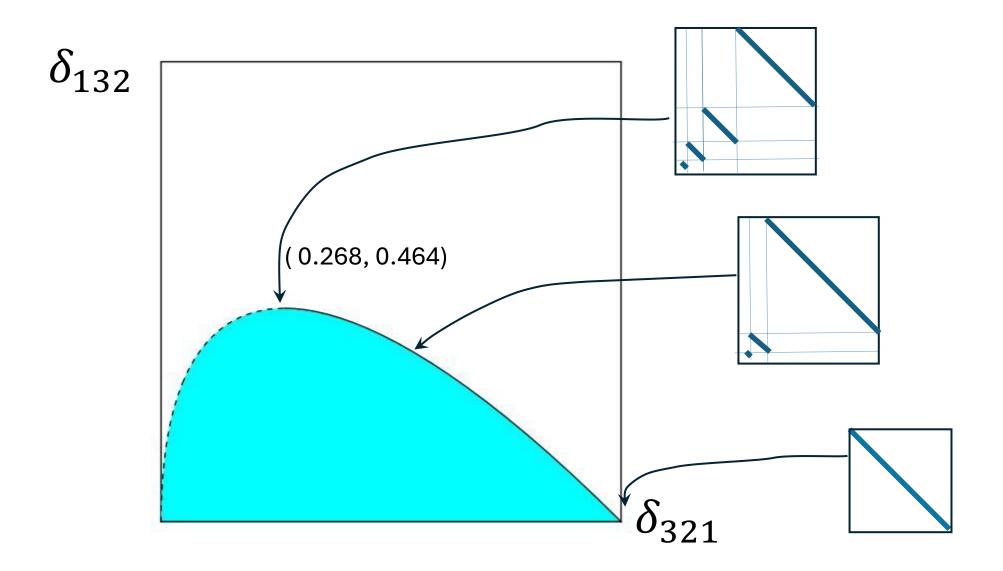
The permutons that maximize such a function are layered permutons.

Theorem: Layered patterns have layered optimizers.

Theorem: Linear combinations of layered patterns

(like $\delta_{132} + k \, \delta_{321}$)

have layered optimizers...IF the coefficients are non-negative.



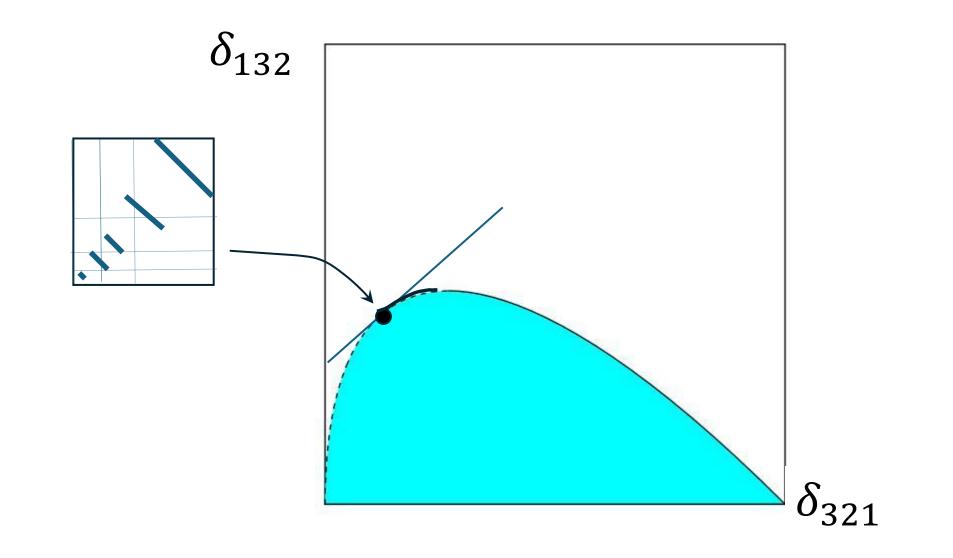
Theorem: Layered patterns have layered optimizers.

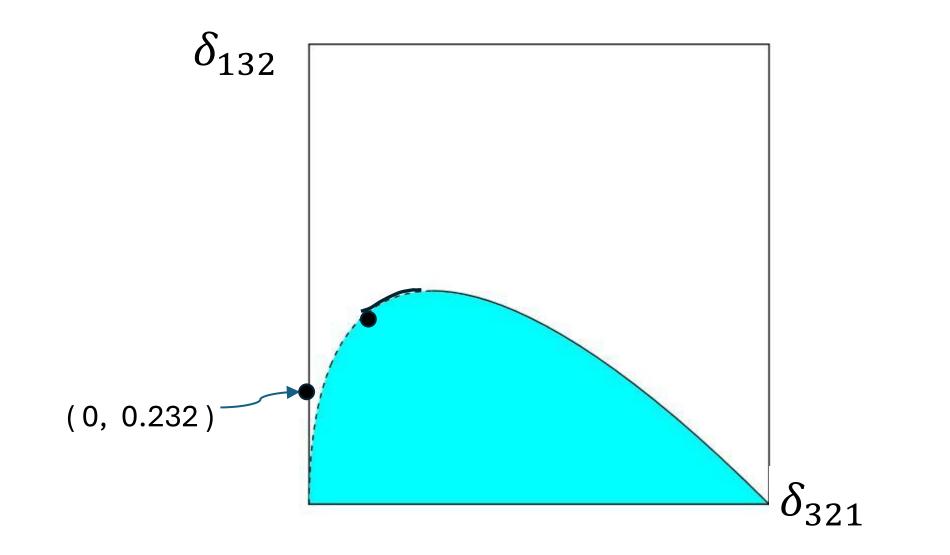
Theorem: Linear combinations of layered patterns

(like $\delta_{132} + k \, \delta_{321}$)

have layered optimizers...IF the coefficients are non-negative.

Theorem: The function $\delta_{132} + k \, \delta_{321}$ has a layered optimizer if $k \ge -1$.





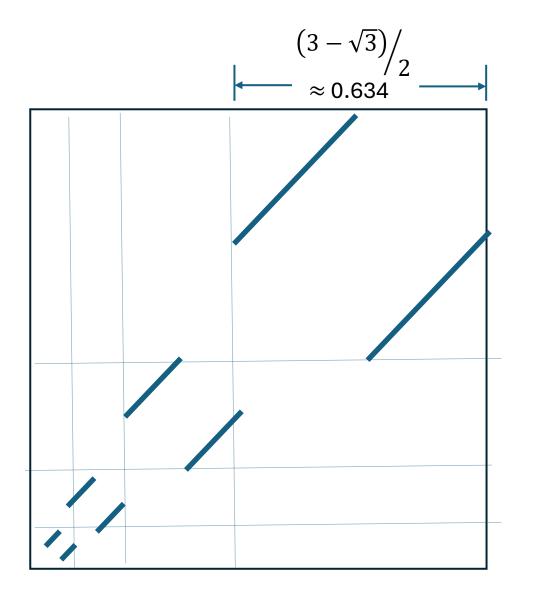
Lara Pudwell looked at restricted packing densities.

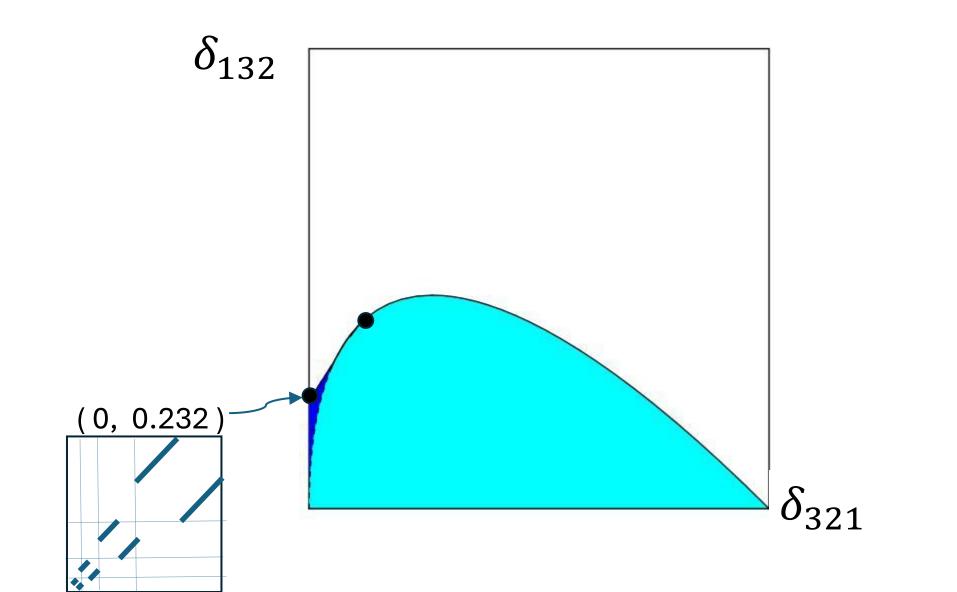
For permutations avoiding 321, the packing density of 132 is

$$\frac{3}{2} - \sqrt{3} \approx 0.232.$$

That is,

 $(\delta_{321},\delta_{132})$ can be (0, 0.232).





The Great Limit Shape

Which vectors

$$\nu \; = \; \left(\; \delta_{123}, \; \delta_{132}, \; \delta_{213}, \; \delta_{231}, \; \delta_{312}, \; \delta_{321} \; \right) \; \in R^6$$

can occur as a limit of vectors

 $(\delta_{123}(\pi_i), \delta_{132}(\pi_i), \delta_{213}(\pi_i), \delta_{231}(\pi_i), \delta_{312}(\pi_i), \delta_{321}(\pi_i))$ for a sequence of permutations $\pi_1, \pi_2, \pi_3, \dots$ of increasing size?

The answer is a compact subset of R^6 .

The Great Limit Shape

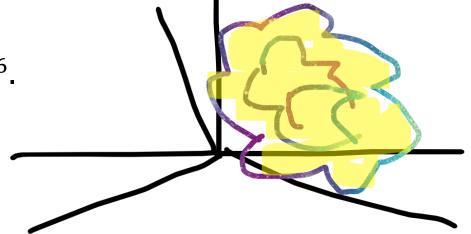
Which vectors

$$\nu \; = \; (\; \delta_{123}, \; \delta_{132}, \; \delta_{213}, \; \delta_{231}, \; \delta_{312}, \; \delta_{321} \;) \; \in R^6$$

can occur as a limit of vectors

 $(\delta_{123}(\pi_i), \delta_{132}(\pi_i), \delta_{213}(\pi_i), \delta_{231}(\pi_i), \delta_{312}(\pi_i), \delta_{321}(\pi_i))$ for a sequence of permutations $\pi_1, \pi_2, \pi_3, \dots$ of increasing size?

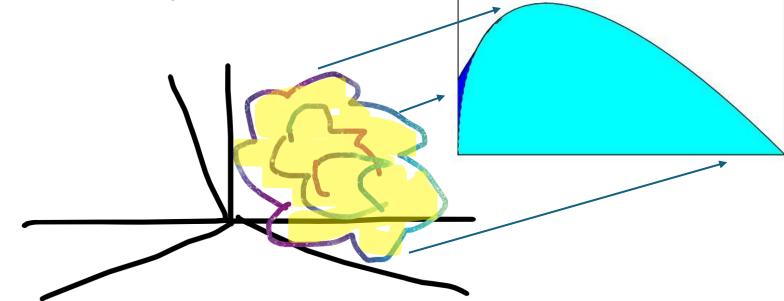
The answer is a compact subset of R^6 .

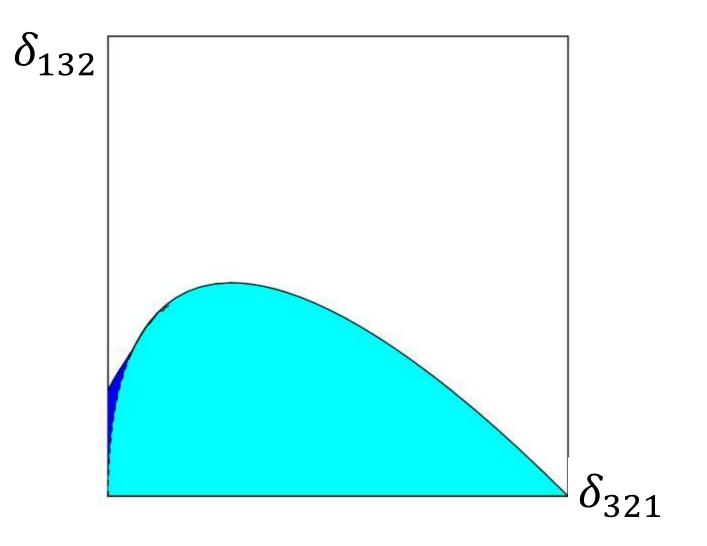


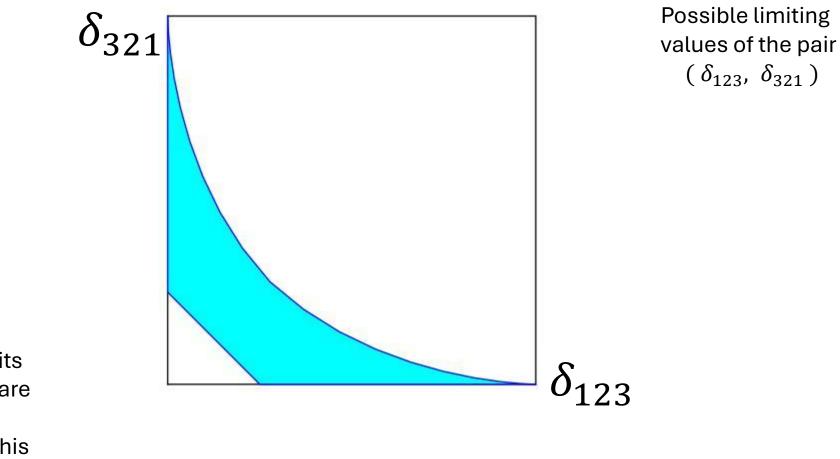
The Great Limit Shape

We can understand the Great Limit Set in terms of its PROJECTIONS and CROSS SECTIONS.

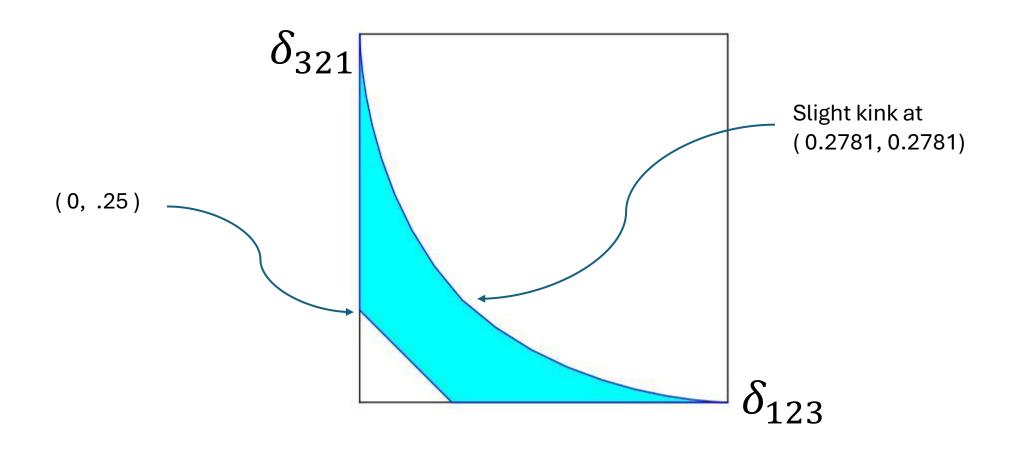
The solution we saw to the $(\delta_{123}, \delta_{321})$ problem is an example of a projection of the 5-d set onto a 2-d plane.

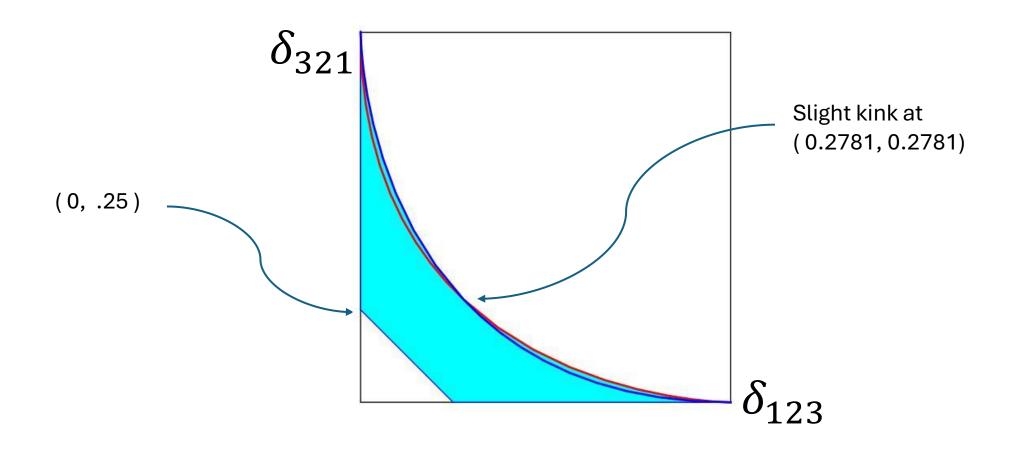




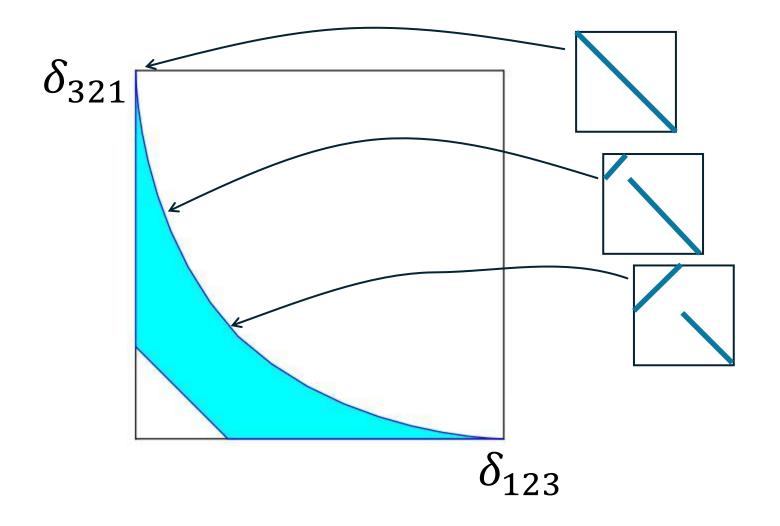


This diagram and proof of its correctness are due to Sergi Elizalde and his collaborators.

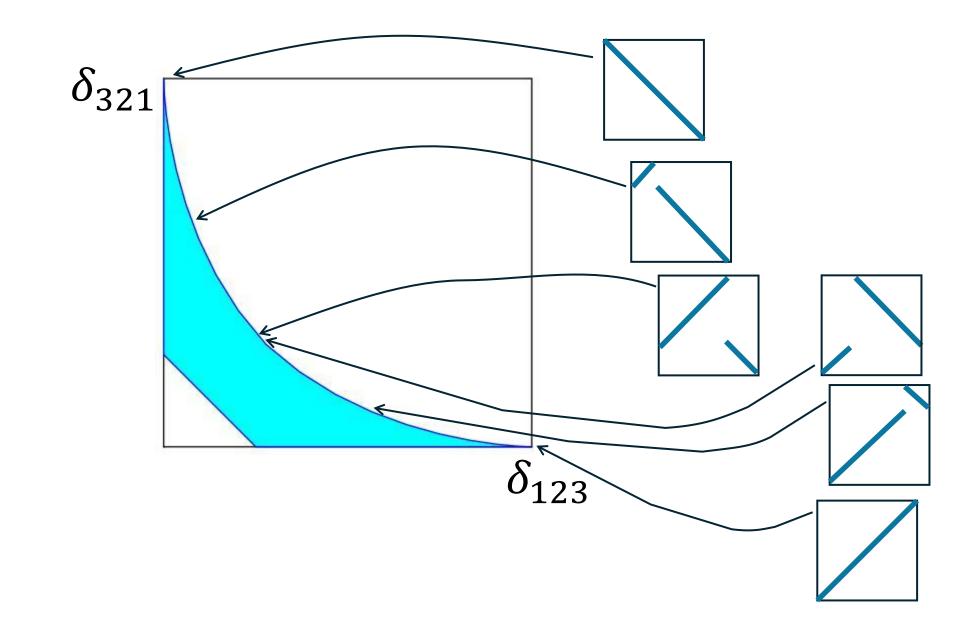


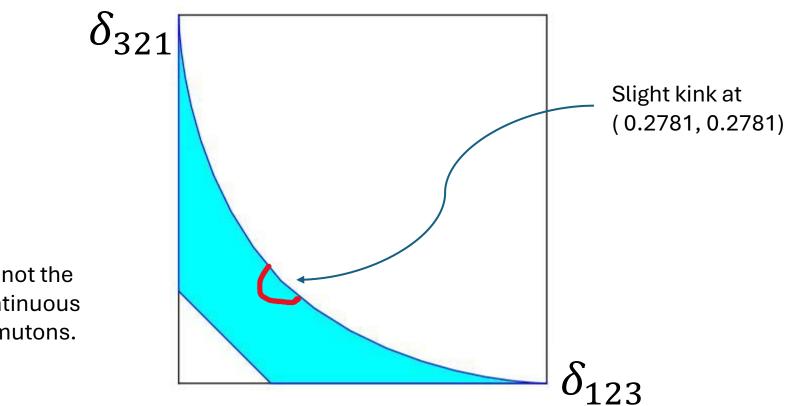


Joint Packing Density for δ_{123} and δ_{321}



Joint Packing Density for δ_{123} and δ_{321}





This path in R² is not the image of any continuous path among permutons.

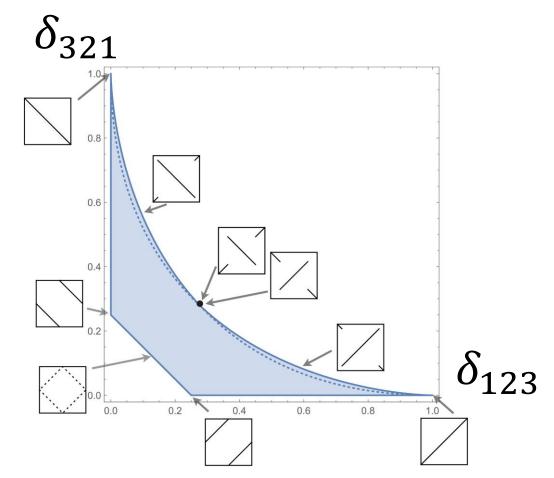
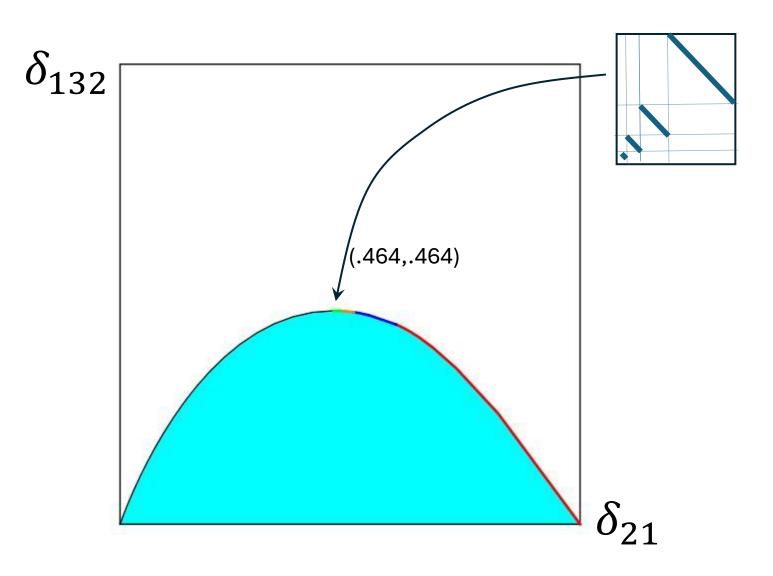
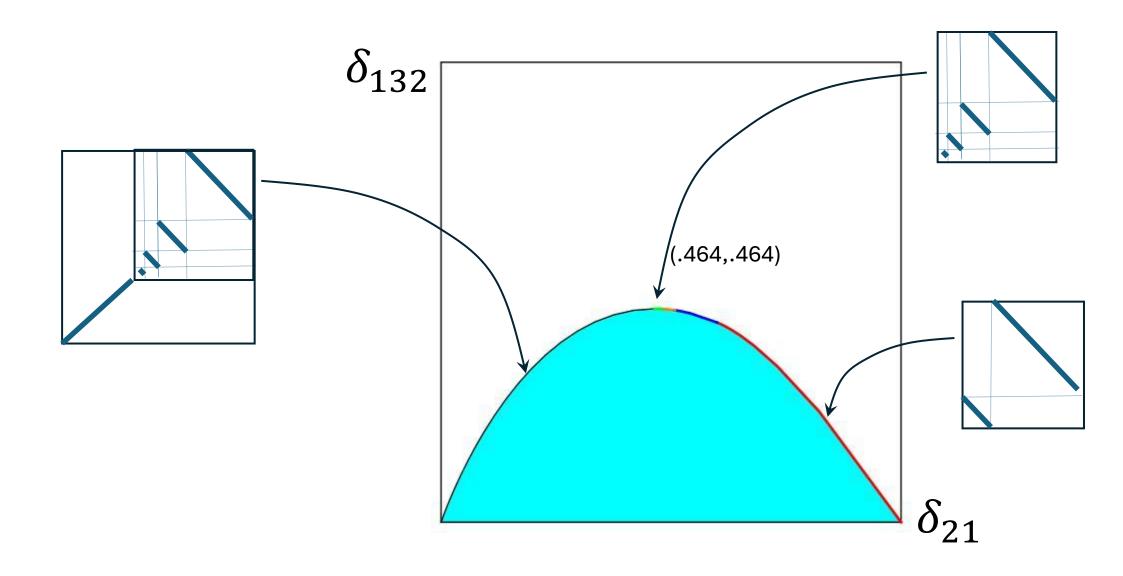


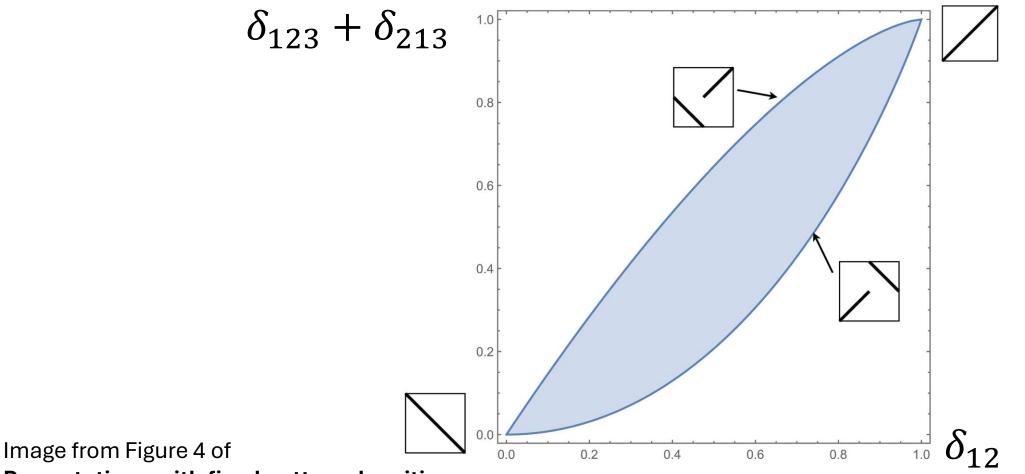
Image from Figure 9 of

Permutations with fixed pattern densities

Richard Kenyon, Daniel Král', Charles Radin, Peter Winkler Random Structures & Algorithms 56(1) Jan. 2020



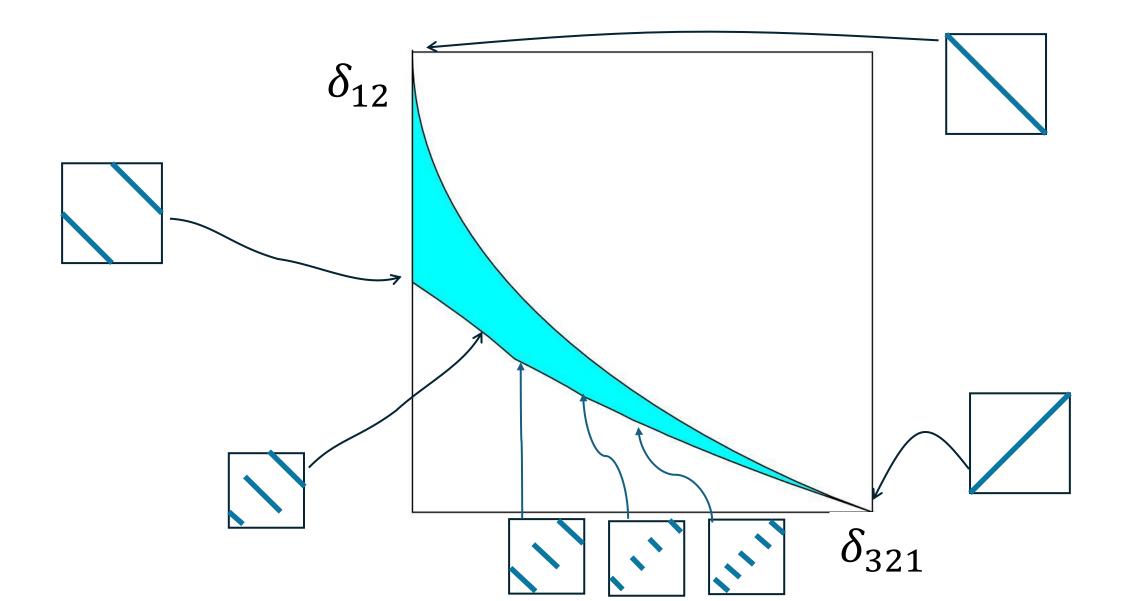


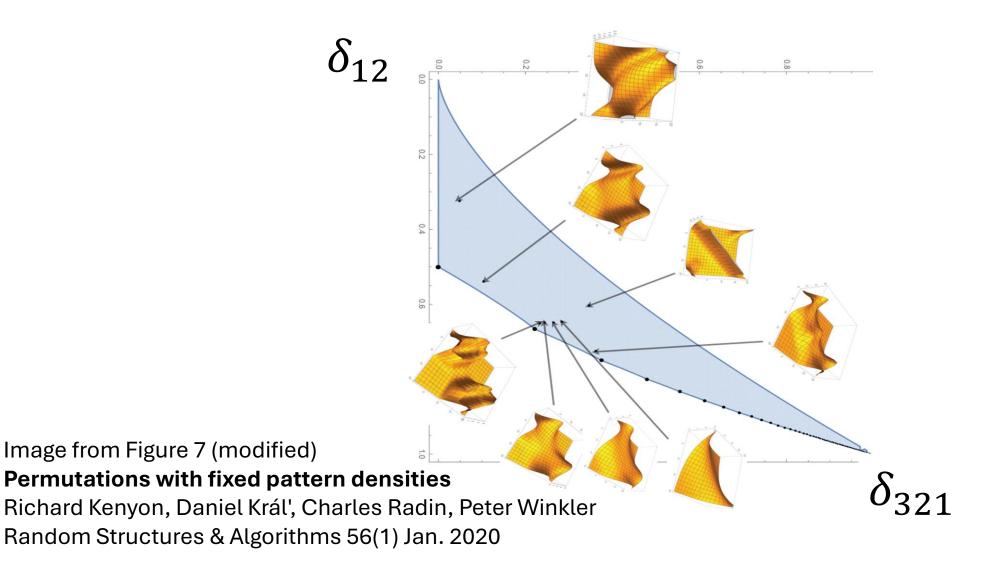


Permutations with fixed pattern densities

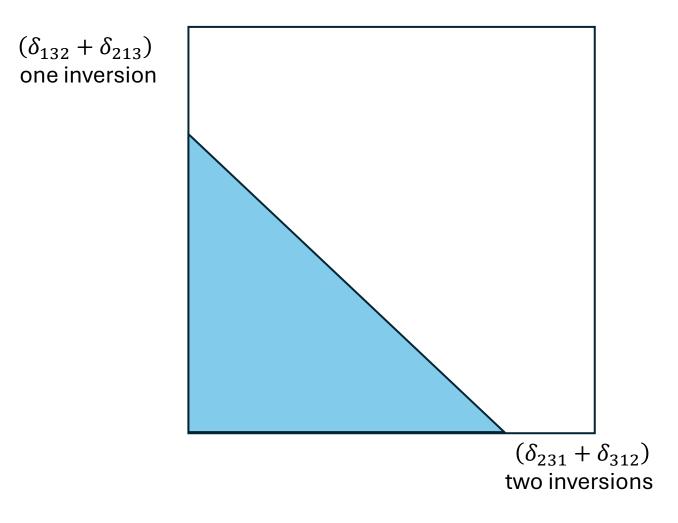
Richard Kenyon, Daniel Král', Charles Radin, Peter Winkler Random Structures & Algorithms 56(1) Jan. 2020



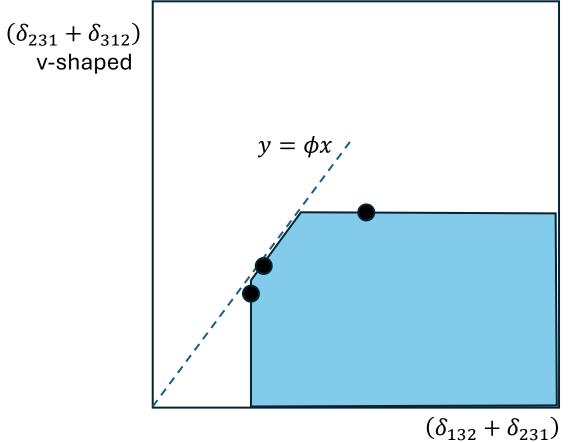




Joint Packing Density for $(\delta_{132} + \delta_{213})$ and $(\delta_{231} + \delta_{312})$



Joint Packing Density for $(\delta_{132} + \delta_{231})$ and $(\delta_{231} + \delta_{312})$



 $(o_{132} + o_{231})$ monotone

The Layered Version

Today we will deal with the special case of LAYERED PERMUTATIONS.

A LAYERED PERMUTATION is one that contains no 231 or 312 patterns.

In dealing with layered permutations, we will omit those components of the packing vector, which becomes

$$v = (\delta_{123}, \delta_{132}, \delta_{213}, \delta_{321}) \in \mathbb{R}^4.$$

Which of these vectors can be limits of packing vectors of layered permutations?

The answer is a compact subset of R⁴, contained in the 3-d standard simplex.

Layered Permutons

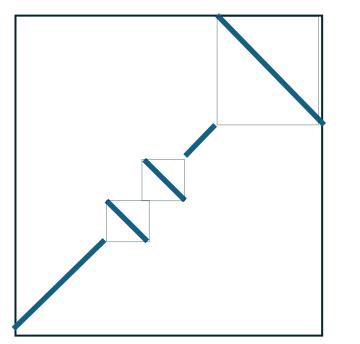
 $\langle x_1, x_2, x_3 \rangle$ = sizes of DOWN boxes, in

decreasing order. In this case, $\left(\frac{1}{3}, \frac{1}{9}, \frac{1}{9}\right)$.

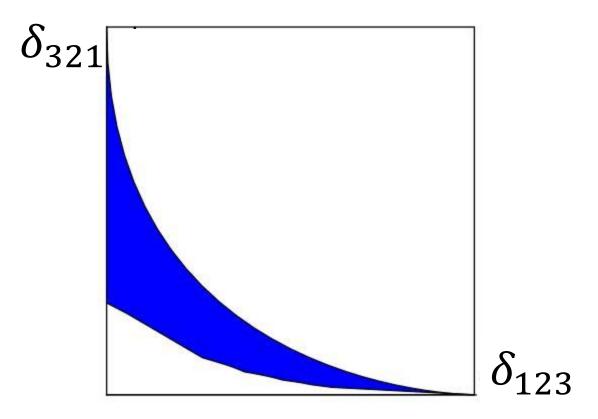
For δ_{123} and δ_{321} , only the *x*'s matter---NOT their order, or anything about the UP boxes.

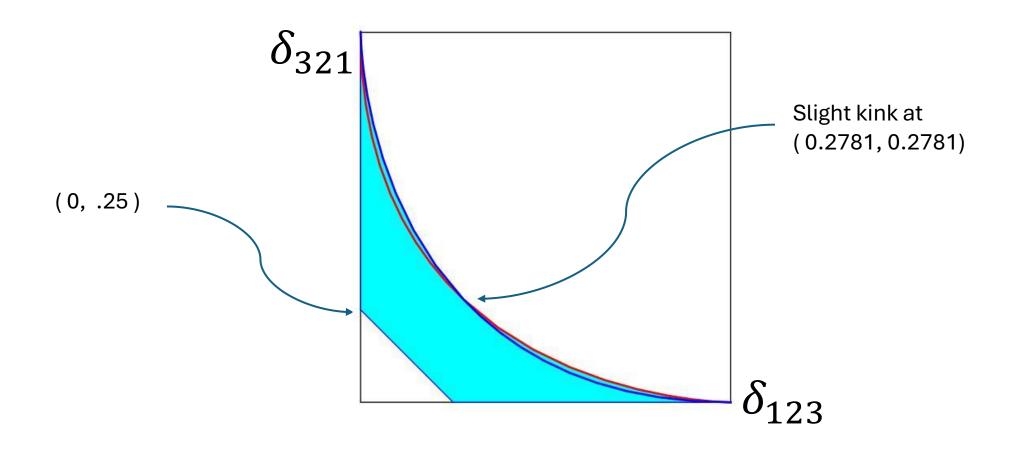
$$\delta_{123} = 1 - 3\sum_{i} x_{i}^{2} + 2\sum_{i} x_{i}^{3}$$
$$\delta_{321} = \sum_{i} x_{i}^{3}$$

For δ_{132} and δ_{213} , order and placement matter.

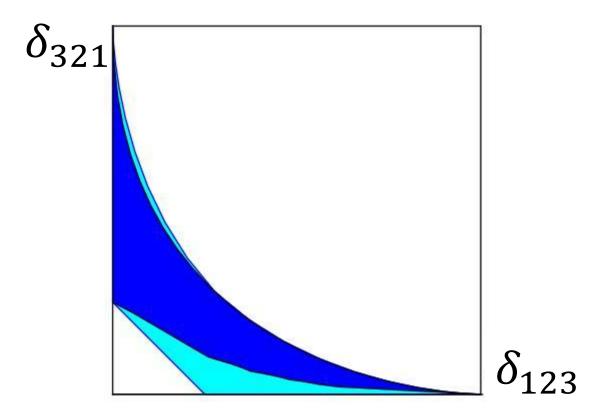


Layered Version: The Main Diagram





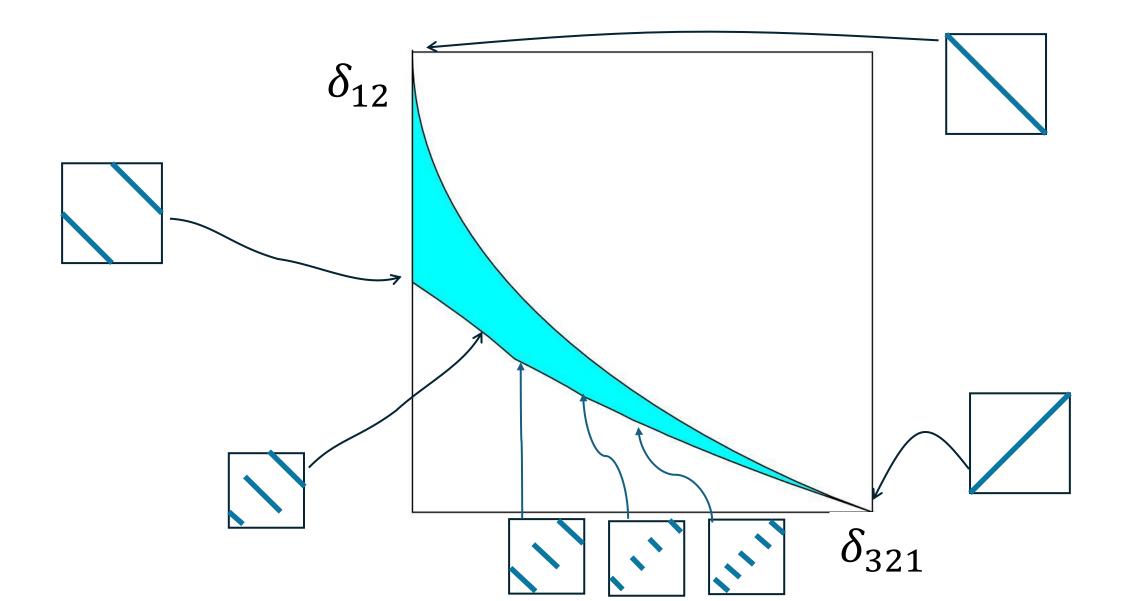
Layered Version: The Main Diagram

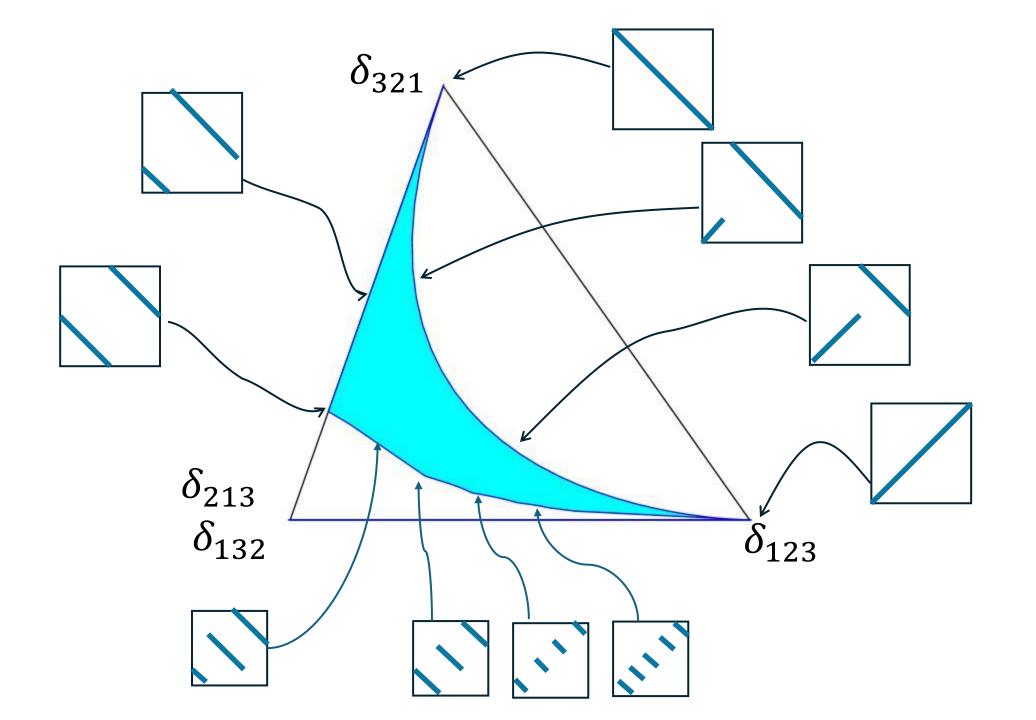


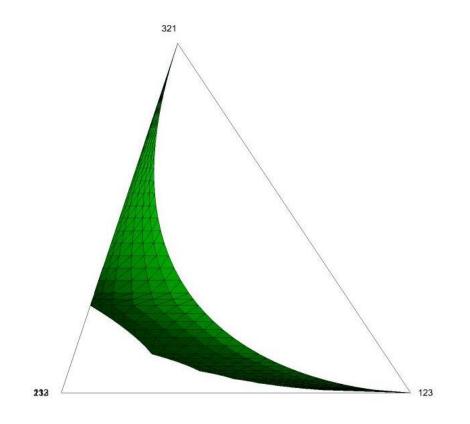
Layered Version: The Main Diagram

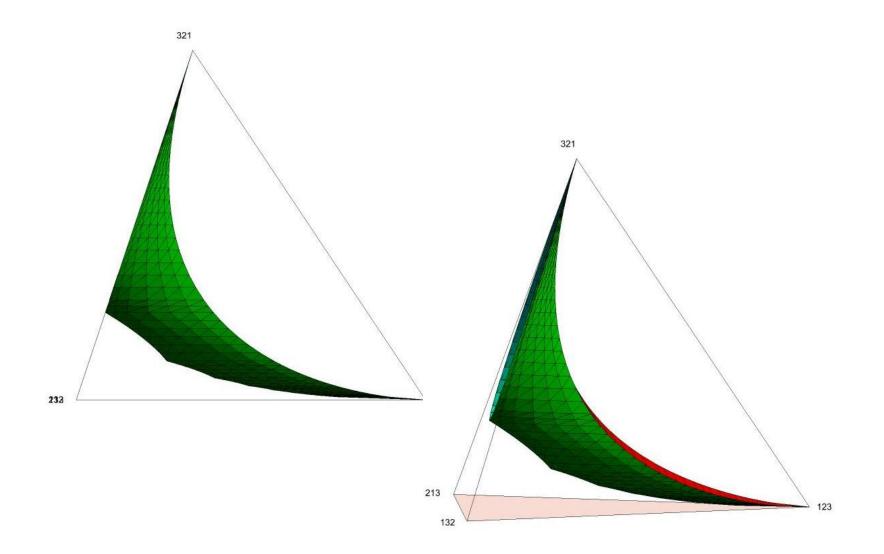
 δ_{32} δ_{123}

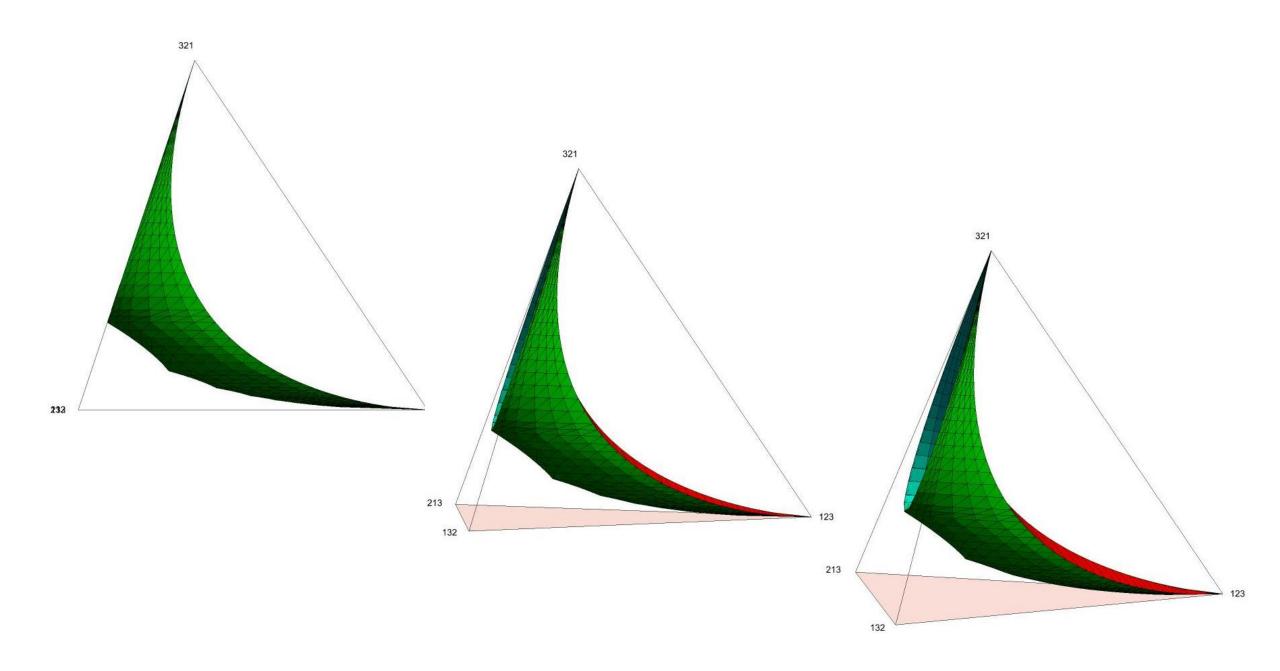
Every path in this set is the image of a continuous path among permutons. Proof: Each point in the blue region corresponds to a unique permuton whose decreasing layers have sizes w, wz, ..., wz, (1-nw)z for w, z in [0,1].

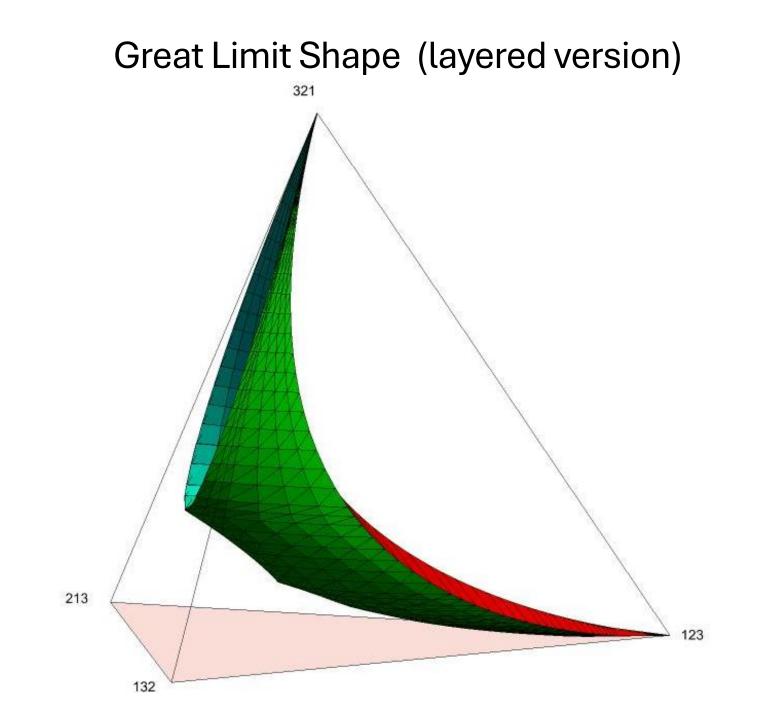


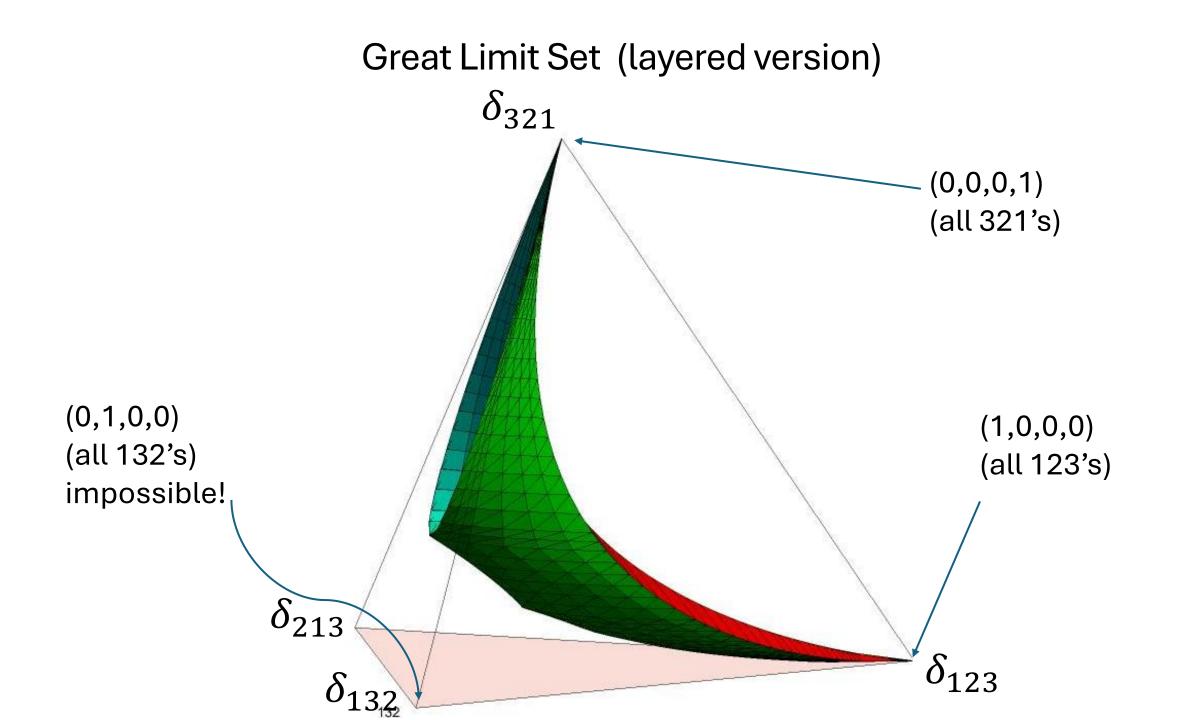










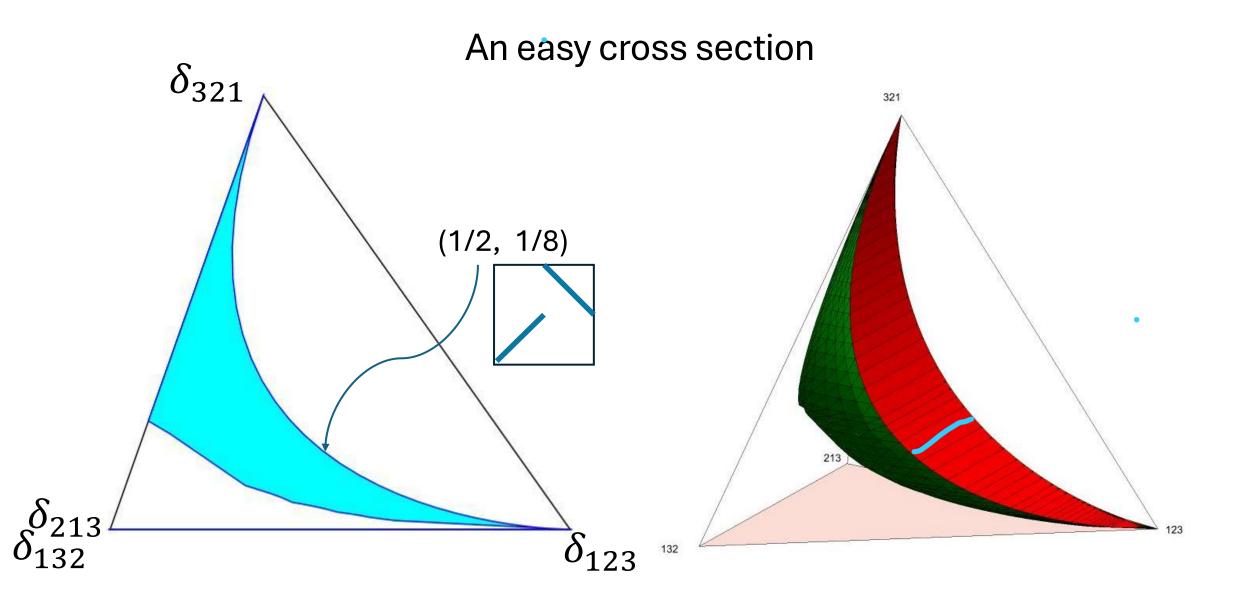


The Cross Sections

If we knew --- for every point in the main diagram --- what are the possible values of $(\delta_{132}, \delta_{213})$, then we would know the entire shape.

Because $\delta_{213} = 1 - \delta_{123} - \delta_{321} - \delta_{132}$, and both δ_{123} and δ_{321} are given by the point we have chosen, we just need to know the possible values of δ_{132} .

Start with points on the boundary of the main diagram.



The cross section at (1/2,1/8)

Suppose $\delta_{123} = 1/2$ and $\delta_{321} = 1/8$. Those values define a point on the upper boundary of the main diagram. They leave 3/8 for δ_{132} and δ_{213} . Fact: δ_{132} can take any value in [0, 3/8].

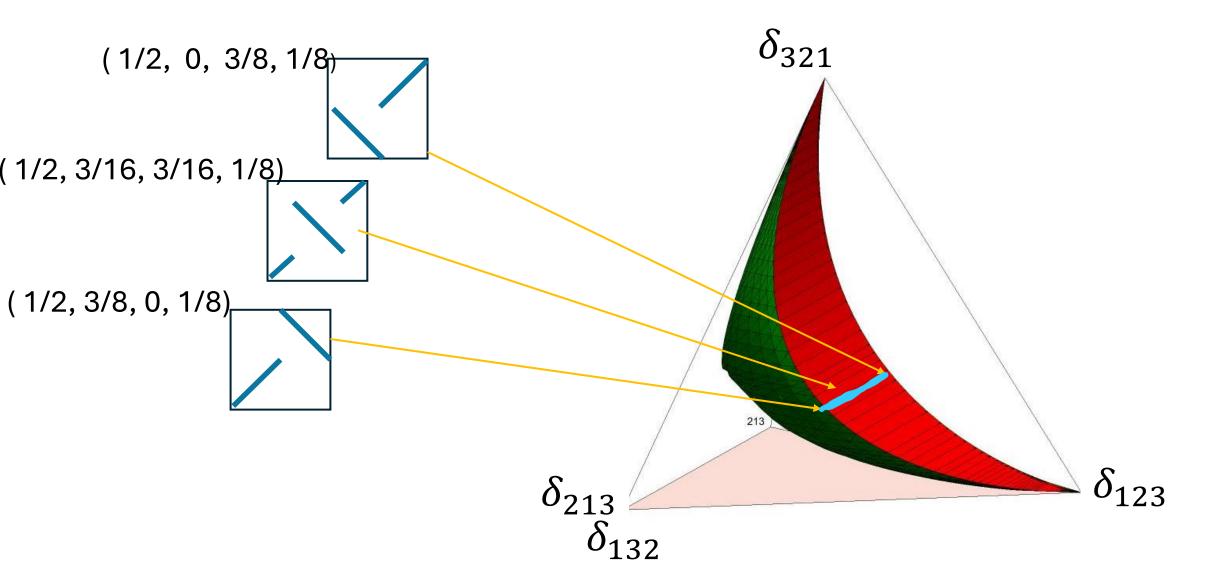
has packing vector (1/2, 3/8, 0, 1/8).

has packing vector (1/2, 3/16, 3/16, 1/8).

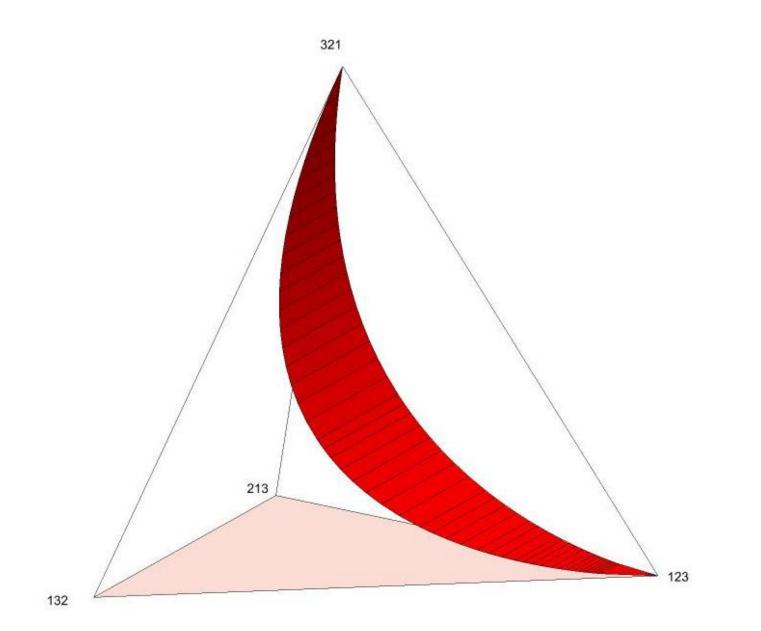
has packing vector (1/2, 0, 3/8, 1/8).

The "up" bits give us slack to adjust $\,\delta_{132}\,$ to any value we like.

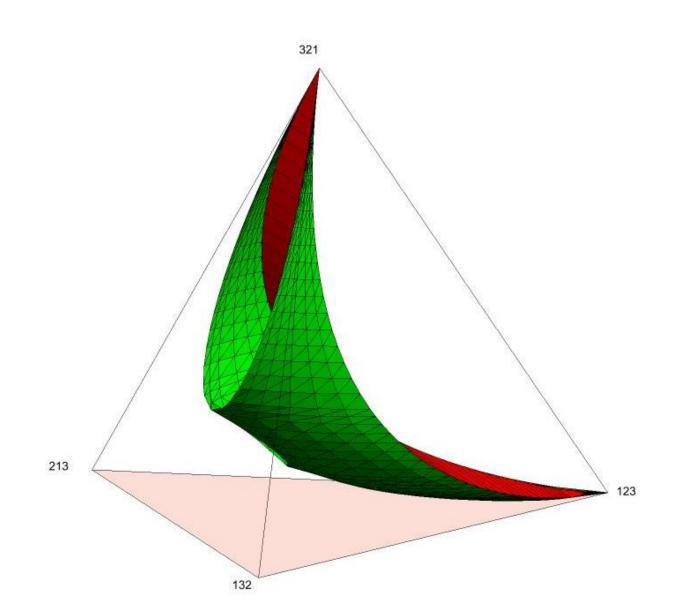
An easy cross section

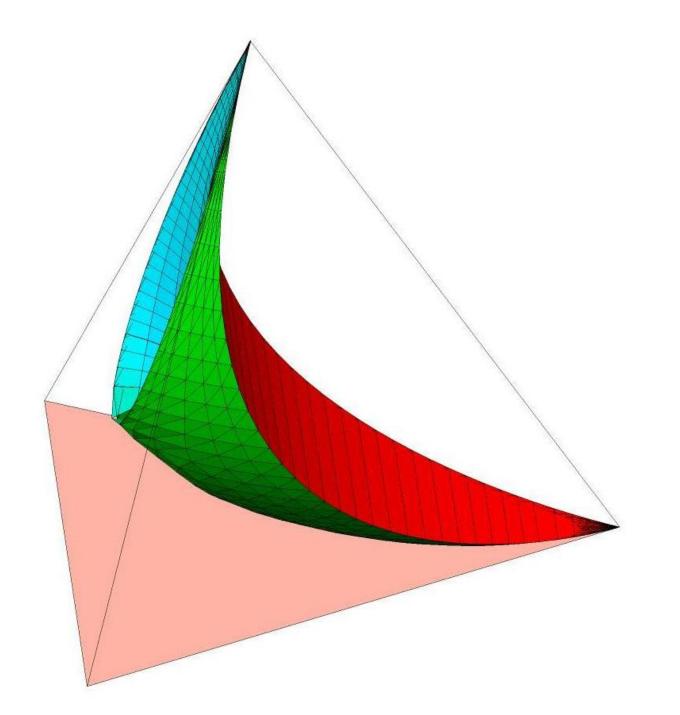


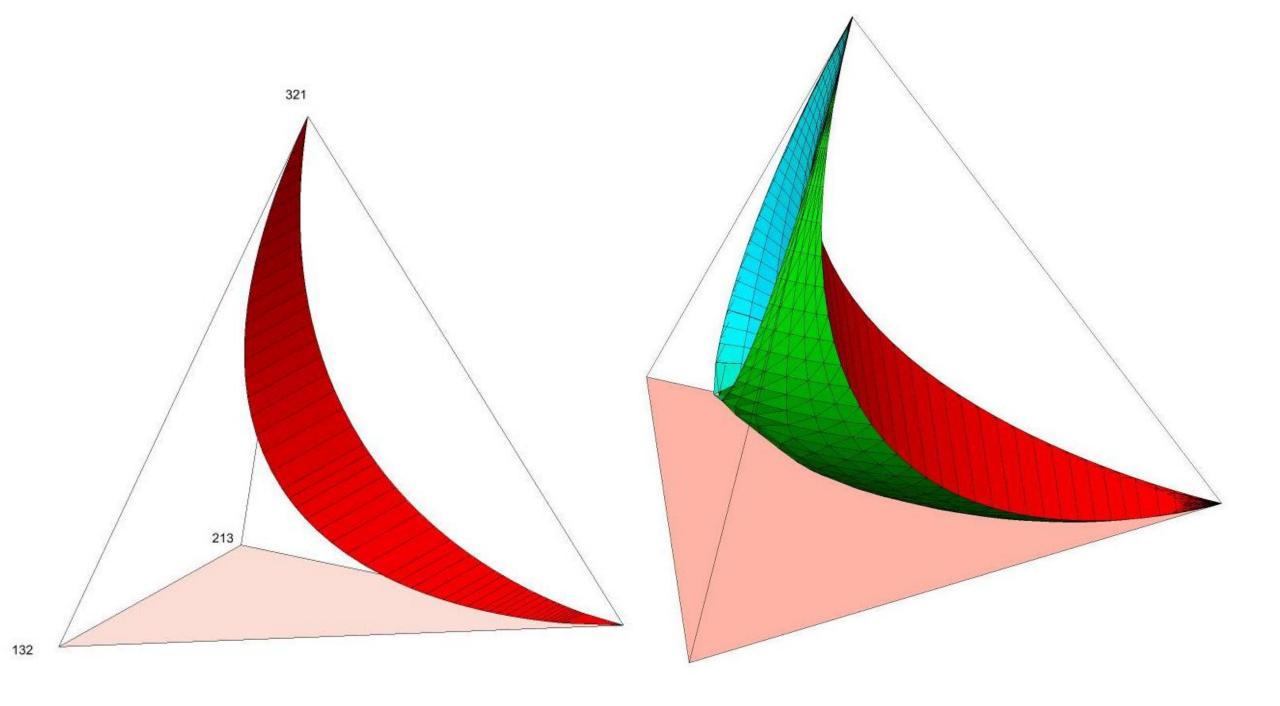
The top surface: Just the easy cross sections

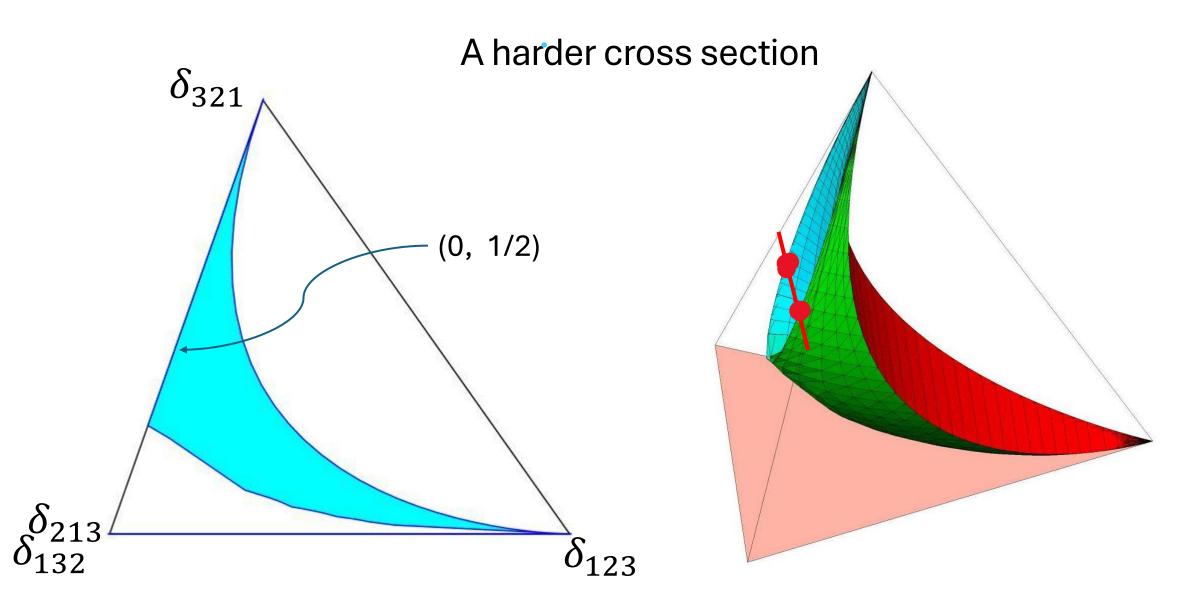


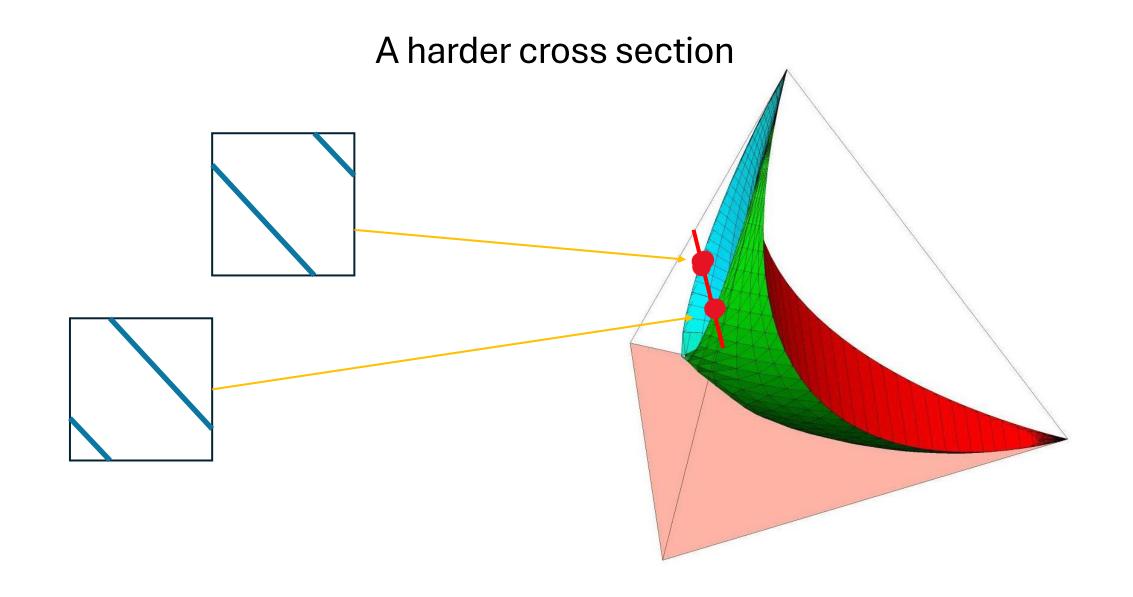
Top and Sides

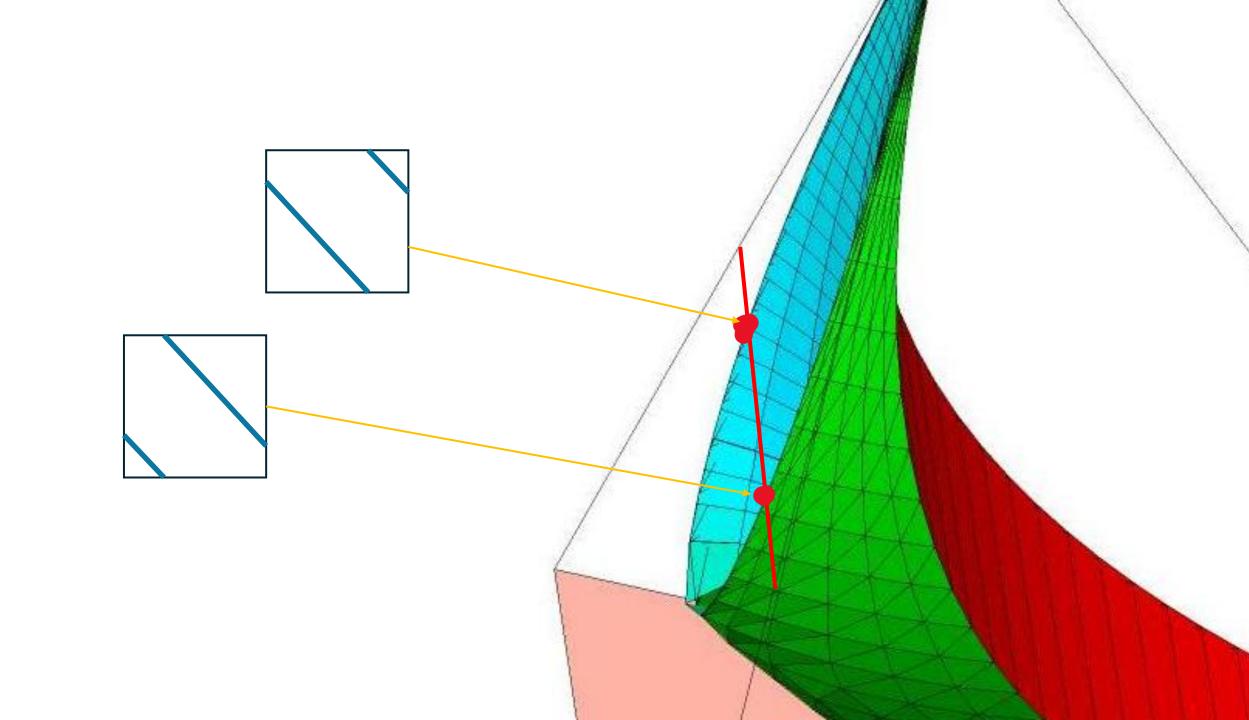


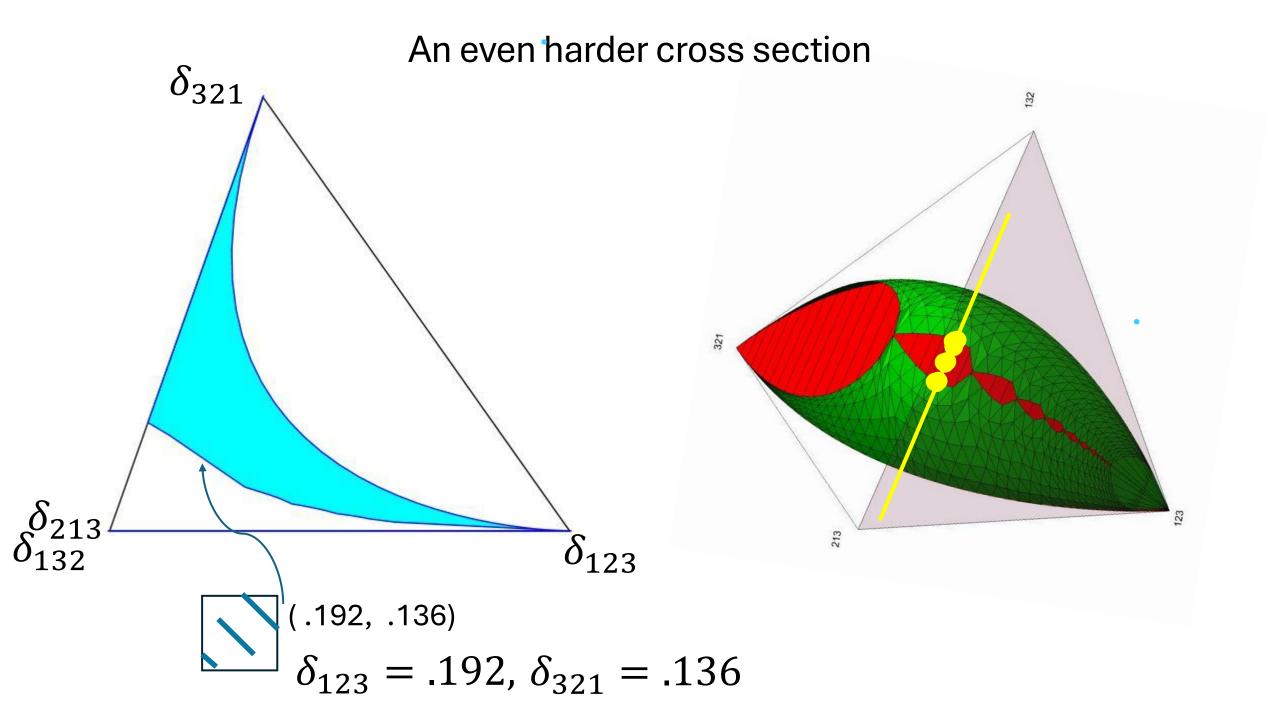


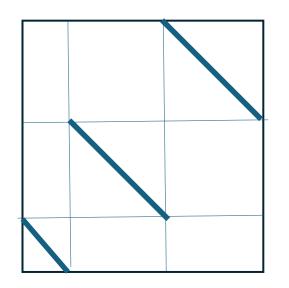


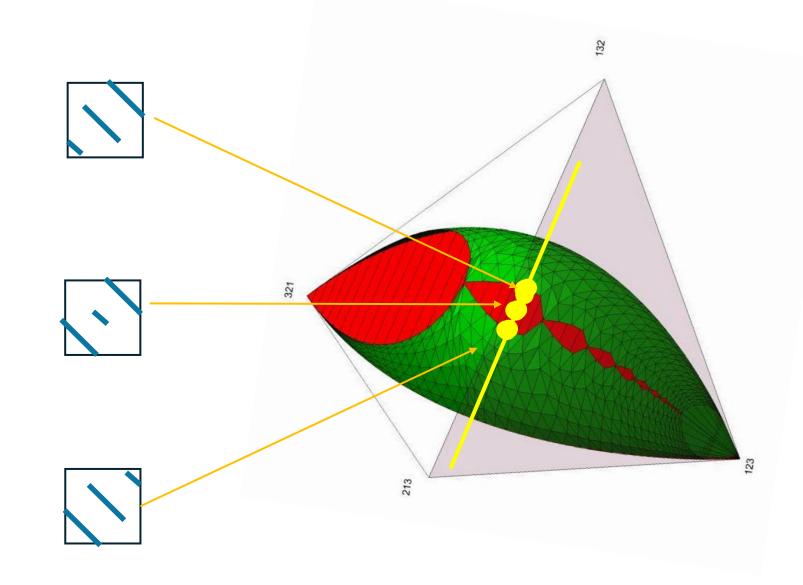












Flip it over...

