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I. Patterns in Catalan words

A Catalan word or Catalan sequence of size n is a word
w = w1w2 . . . wn with entries fromN such that

i. w1 = 0

ii. and wi 6 wi−1 + 1 for i > 2.

I Yes: 001120123342331
I No:

Catalan words are a subset of restricted growth functions,
which are a subset of both ascent sequences and inversion
sequences.
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I. Patterns in Catalan words

I C = set of Catalan words
I Cn = set of Catalan words of size n

Fact: |Cn| = cn (the nth Catalan number).
Bijection with Dyck paths: label the up steps by height

001120123342331 ∈ C15
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I. Patterns in Catalan words

Given Catalan words v,w ∈ C , we say v 6 w, or v is contained
in w (as a pattern), if there exist i1 < i2 < · · · < ik such that
st(wi1wi2 . . . wik) = v.
I “st” denotes the standardization of a word.

v 6 wmeansw has a subsequence that is order isomorphic to v.

I 001120123342331 contains 01120 since st(12241) = 01120.
I 001120123342331 avoids 01200, since no subsequence goes
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I. Patterns in Catalan words

If R is a set of words, then
I C(R) = set of Catalan words avoiding every element of R.
I Cn(R) = set of Catalan words of size n avoiding every

element of R.

Examples:
I C(012) is the set of Catalan words with only 0’s and 1’s.

I |Cn(012)| = 2
n−1.

I C(10) is the set of Catalan words that are weakly
increasing.
I C(10) = C(010).
I |Cn(010)| = 2

n−1.
I C(000) is the set of Catalan words with 6 2 occurrences of

each value.
I {|Cn(000)|}n>0 = {1, 1, 2, 4, 9, 19, 42, 90, . . . }.



I. Patterns in Catalan words

If R is a set of words, then
I C(R) = set of Catalan words avoiding every element of R.
I Cn(R) = set of Catalan words of size n avoiding every

element of R.
Examples:
I C(012) is the set of Catalan words with only 0’s and 1’s.

I |Cn(012)| = 2
n−1.

I C(10) is the set of Catalan words that are weakly
increasing.
I C(10) = C(010).
I |Cn(010)| = 2

n−1.
I C(000) is the set of Catalan words with 6 2 occurrences of

each value.
I {|Cn(000)|}n>0 = {1, 1, 2, 4, 9, 19, 42, 90, . . . }.



I. Patterns in Catalan words

If R is a set of words, then
I C(R) = set of Catalan words avoiding every element of R.
I Cn(R) = set of Catalan words of size n avoiding every

element of R.
Examples:
I C(012) is the set of Catalan words with only 0’s and 1’s.

I |Cn(012)| = 2
n−1.

I C(10) is the set of Catalan words that are weakly
increasing.
I C(10) = C(010).
I |Cn(010)| = 2

n−1.

I C(000) is the set of Catalan words with 6 2 occurrences of
each value.
I {|Cn(000)|}n>0 = {1, 1, 2, 4, 9, 19, 42, 90, . . . }.



I. Patterns in Catalan words

If R is a set of words, then
I C(R) = set of Catalan words avoiding every element of R.
I Cn(R) = set of Catalan words of size n avoiding every

element of R.
Examples:
I C(012) is the set of Catalan words with only 0’s and 1’s.

I |Cn(012)| = 2
n−1.

I C(10) is the set of Catalan words that are weakly
increasing.
I C(10) = C(010).
I |Cn(010)| = 2

n−1.
I C(000) is the set of Catalan words with 6 2 occurrences of

each value.
I {|Cn(000)|}n>0 = {1, 1, 2, 4, 9, 19, 42, 90, . . . }.



I. Patterns in Catalan words

Baril, Kirgizov, & Vajnovszki (2018) enumerate Cn(v) for every
size-3 word v (refined by descent number).
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Baril, Khalil, & Vajnovszki (2021) enumerate Cn(u, v) for every
pair of size-3 words u and v.

(they don’t have a nice table)



I. Patterns in Catalan words

Baril, Mansour, Ramı́rez, & Shattuck (preprint 2024) enumerate
Cn(v) for every size-4 word v (refined by descent number).



I. Patterns in Catalan words

BMRS conjecture that C(w) has a rational generating function
for every word w.

Which of these properties does C have:
1. Every proper subclass is rational:
2. Every proper finitely based subclass is rational:
3. Every proper well-quasi-ordered subclass is rational:

I S(321) has properties 2 and 3 (Albert, Brignall, Ruškuc, &
Vatter 2019).

I S(312) has all three properties (Albert & Atkinson 2005).



I. Patterns in Catalan words

BMRS conjecture that C(w) has a rational generating function
for every word w.

Which of these properties does C have:
1. Every proper subclass is rational: No!
2. Every proper finitely based subclass is rational: Yes!
3. Every proper well-quasi-ordered subclass is rational: (open)

I S(321) has properties 2 and 3 (Albert, Brignall, Ruškuc, &
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II. Infinite antichain of Catalan words

Define A = {012 012 123 123,

012 012 123 234 234,

012 012 123 234 345 345,

012 012 123 234 345 456 456,

. . .}.

A is an infinite set of Catalan words such that no word contains
another word as a pattern — an infinite antichain.

Theorem (T. & Vatter 2025+): C is not a well-quasi-order (wqo):
there exists an infinite antichain in C .
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II. Infinite antichain of Catalan words

Why is an infinite antichain significant?
I It means that not all pattern-avoiding classes can be

defined by a finite set of patterns, since C(A) has an
infinite basis.

I It allows us to define an uncountable set of
pattern-avoiding classes, all with different enumerations:
{C(R) : R ⊆ A}.

I In a sense, C has greater complexity than quasi-orders that
do not have infinite antichains. (Contrast with the

Robertson–Seymour Theorem about graph minors; contrast with Albert &

Atkinson 2005 on S(312).)

Corollary (T. & Vatter 2025+): There exist uncountably many
sets R ⊆ C such that the generating function for C(R) is not
rational (or D-algebraic) (or even computable!).
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III. Rationality of finitely based classes

Theorem (T. & Vatter 2025+): If R is a non-empty finite subset of
C , then C(R) has a rational generating function.

Our proof is similar to the proof of the same property of S(321)
by Albert, Brignall, Ruškuc, & Vatter 2019. We rely on the fact
that every regular language has a rational generating function.

1. There exist a, b such that C(R) ⊆ C((012 . . . a)b).
2. The panel encoding of C((012 . . . a)b) maps each Catalan

word to a word over a finite alphabet, and the image of this
encoding is a regular language.

3. Within this regular language, the set of words
corresponding to C(R) is a regular language.



III. Rationality of finitely based classes

Theorem (T. & Vatter 2025+): If R is a non-empty finite subset of
C , then C(R) has a rational generating function.

Our proof is similar to the proof of the same property of S(321)
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III. Rationality of finitely based classes

1. There exist a, b such that C(R) ⊆ C((012 . . . a)b).

Example: R = {01120}.
01120 is contained in 0123 0123 0123 (using a = 3 and b = 3).
Then C(01120) ⊆ C(0123 0123 0123).



III. Rationality of finitely based classes

2. The panel encoding of C((012 . . . a)b) maps each Catalan
word to a word over a finite alphabet, and the image of this
encoding is a regular language.

This is almost exactly the same as in ABRV 2019.

Example: We will encode 001120123342331 ∈ C(0123 0123 0123)

as a word over the alphabet {0,
←
0 ,
→
0 ,
↔
0 , 1, 2, #}.

00112
→
0
←
1 23342331

↔
0
←
1 2231220

←
0 112011

00112
→
0

↔
0 0

←
0 112011

The panel encoding is read from the second row:

00112
→
0 #
↔
0 0 #

←
0 112011



III. Rationality of finitely based classes

2. The panel encoding of C((012 . . . a)b) maps each Catalan
word to a word over a finite alphabet, and the image of this
encoding is a regular language.

I Avoiding (012 . . . a)b means there are < b underlined
subwords in each step, and so each block of the panel
encoding has < b left arrows and < b right arrows. This is
what makes the language regular!

I The language of panel encodings is the same as in ABRV,
but with one extra condition: each block of the panel

encoding starts with
←
0 or

↔
0 except the first block.



III. Rationality of finitely based classes

3. Within this regular language [of panel encodings], the set
of words corresponding to C(R) is a regular language.

As in ABRV, we can use a transducer on panel encodings that
non-deterministically marks an occurrence of some pattern and
checks whether it is σ.

Example: σ = 01120

00112
→
0 #
↔
0 0 #

←
0 112011 → 00112

→
0 #
↔
0 0 #

←
0 112011

→ 12
→

#
↔
0 #
←
0 2

→ 01120



Further questions

I Is there some kind of symmetry on Catalan words to
explain why so many classes have the same enumeration?
(“Recursive reversal”)

I Can we bound the degree of the rational generating
function in order to automatically enumerate classes?

I Can our proof of rationality be adapted to prove the
rationality of the bivariate generating function tracking
descent number?

I Is every wqo class of Catalan words rational?
I Conjecture: for w ∈ Ck, |Cn(w)| is maximized by w = 0k.


