The number of Catalan words avoiding a finite set of patterns has a rational generating function

Justin Troyka

California State University, Los Angeles

Joint work in progress with [Jay Pantone and] Vincent Vatter

Permutation Patterns June 7, 2025

- I. Patterns in Catalan words
- II. Infinite antichain of Catalan words
- III. Rationality of finitely based classes

- II. Infinite antichain of Catalan words
- III. Rationality of finitely based classes

A Catalan word or Catalan sequence of size n is a word $w = w_1 w_2 \dots w_n$ with entries from \mathbb{N} such that

- i. $w_1 = 0$
- ii. and $w_i \leq w_{i-1} + 1$ for $i \geq 2$.

A Catalan word or Catalan sequence of size n is a word $w = w_1 w_2 \dots w_n$ with entries from \mathbb{N} such that

- i. $w_1 = 0$
- ii. and $w_i \leq w_{i-1} + 1$ for $i \geq 2$.
- Yes: 001120123342331
- ► No: 00112341331

A Catalan word or Catalan sequence of size n is a word $w = w_1 w_2 \dots w_n$ with entries from \mathbb{N} such that

- i. $w_1 = 0$
- ii. and $w_i \leq w_{i-1} + 1$ for $i \geq 2$.
- Yes: 001120123342331
- ► No: 00112341331

A Catalan word or Catalan sequence of size n is a word $w = w_1 w_2 \dots w_n$ with entries from \mathbb{N} such that

- i. $w_1 = 0$
- ii. and $w_i \leq w_{i-1} + 1$ for $i \geq 2$.
- Yes: 001120123342331
- ▶ No: 0011234<mark>13</mark>31

Catalan words are a subset of restricted growth functions, which are a subset of both ascent sequences and inversion sequences.

- ► **C** = set of Catalan words
- C_n = set of Catalan words of size n

Fact: $|C_n| = c_n$ (the nth Catalan number). Bijection with Dyck paths: label the up steps by height

 $001120123342331 \in C_{15}$

Given Catalan words $v, w \in C$, we say $v \leq w$, or v is contained in w (as a pattern), if there exist $i_1 < i_2 < \cdots < i_k$ such that $st(w_{i_1}w_{i_2}\dots w_{i_k}) = v$.

"st" denotes the standardization of a word.

 $v \leq w$ means *w* has a subsequence that is order isomorphic to *v*.

Given Catalan words $v, w \in C$, we say $v \leq w$, or v is contained in w (as a pattern), if there exist $i_1 < i_2 < \cdots < i_k$ such that $st(w_{i_1}w_{i_2}\dots w_{i_k}) = v$.

"st" denotes the standardization of a word.

 $v \leq w$ means *w* has a subsequence that is order isomorphic to *v*.

- 001120123342331 contains 01120 since st(12241) = 01120.
- 001120123342331 avoids 01200, since no subsequence goes

If R is a set of words, then

- C(R) = set of Catalan words avoiding every element of R.
- C_n(R) = set of Catalan words of size n avoiding every element of R.

If R is a set of words, then

- C(R) = set of Catalan words avoiding every element of R.
- C_n(R) = set of Catalan words of size n avoiding every element of R.

Examples:

• C(012) is the set of Catalan words with only 0's and 1's.

► $|C_n(012)| = 2^{n-1}$.

If R is a set of words, then

- C(R) = set of Catalan words avoiding every element of R.
- C_n(R) = set of Catalan words of size n avoiding every element of R.

Examples:

• C(012) is the set of Catalan words with only 0's and 1's.

► $|C_n(012)| = 2^{n-1}$.

C(10) is the set of Catalan words that are weakly increasing.

•
$$C(10) = C(010).$$

► $|C_n(010)| = 2^{n-1}$.

If R is a set of words, then

- C(R) = set of Catalan words avoiding every element of R.
- C_n(R) = set of Catalan words of size n avoiding every element of R.

Examples:

• C(012) is the set of Catalan words with only 0's and 1's.

• $|C_n(012)| = 2^{n-1}$.

- *C*(10) is the set of Catalan words that are weakly increasing.
 - C(10) = C(010).
 - ► $|C_n(010)| = 2^{n-1}$.
- C(000) is the set of Catalan words with ≤ 2 occurrences of each value.

• $\{|C_n(000)|\}_{n \ge 0} = \{1, 1, 2, 4, 9, 19, 42, 90, \dots\}.$

-

Baril, Kirgizov, & Vajnovszki (2018) enumerate $C_n(v)$ for every size-3 word v (refined by descent number).

Pattern p	Sequence $ C_n(p) $	Generating function	OEIS [12]
012, 001, 010	2^{n-1}	$\frac{1-x}{1-2x}$	A011782
021	$(n-1)\cdot 2^{n-2}+1$	$\frac{1-4x+5x^2-x^3}{(1-x)(1-2x)^2}$	A005183
102, 201	$\frac{3^{n-1}+1}{2}$	$\frac{1-3x+x^2}{(1-x)(1-3x)}$	A007051
120, 101	F_{2n-1}	$\frac{1-2x}{1-3x+x^2}$	A001519
011	$\frac{n(n-1)}{2} + 1$	$\frac{1-2x+2x^2}{(1-x)^3}$	A000124
000		$\frac{1-2x^2}{1-x-3x^2+x^3}$	
100	$\lceil \frac{(1+\sqrt{3})^{n+1}}{12} \rceil$	$\frac{1-2x-x^2+x^3}{1-3x+2x^3}$	A057960
110	$rac{1}{2}\sum_{k=0}^{\lfloorrac{n}{2} floor}inom{n+1}{2k+1} 2^k - rac{n-1}{2}$	$\frac{1-3x+2x^2+x^3}{(1-x)^2(1-2x-x^2)}$	
210		$\frac{1\!-\!5x\!+\!7x^2\!-\!x^3\!-\!x^4}{(1\!-\!2x)(1\!-\!4x\!+\!3x^2\!+\!x^3)}$	

Baril, Khalil, & Vajnovszki (2021) enumerate $C_n(u, v)$ for every pair of size-3 words u and v.

(they don't have a nice table)

Baril, Mansour, Ramírez, & Shattuck (preprint 2024) enumerate $C_n(v)$ for every size-4 word v (refined by descent number).

Class	p	$C_p(x)$	Reference/OEIS $\#$
1	1234	$\frac{1-2x}{1-3x+x^2}$	Cor. 2.2/A001519
2	1243	$\frac{(1-x)(1-5x+7x^2-x^3)}{(1-2x)^2(1-3x+x^2)}$	Cor. 2.5/A244885
3	1324		
	1423	$\frac{1\!-\!7x\!+\!16x^2\!-\!12x^3\!+\!x^4}{(1\!-\!2x)(1\!-\!3x)(1\!-\!3x\!+\!x^2)}$	Cor. 2.8, Thm. 2.10
4	1342	$\frac{1-6x+12x^2-9x^3+3x^4}{(1-x)(1-3x+x^2)^2}$	Cor. 2.12/A116845
5	1432	$\frac{1 - 11x + 49x^2 - 112x^3 + 136x^4 - 78x^5 + 9x^6 + 6x^7 - x^8}{(1 - x)(1 - 2x)^2(1 - 3x + x^2)(1 - 4x + 3x^2 + x^3)}$	Cor. 2.15
6	2134		
	3412	$\frac{(1-x)(1-3x)}{1-5x+6x^2-x^3}$	Thm. $3.1/A080937$
7	2143		
	4312	$\frac{(1\!-\!3x\!+\!x^2)(1\!-\!7x\!+\!17x^2\!-\!17x^3\!+\!6x^4\!-\!x^5)}{(1\!-\!x)(1\!-\!2x)^2(1\!-\!6x\!+\!10x^2\!-\!4x^3\!+\!x^4)}$	Thms. 4.2 and 3.7
8	2314		
	2413		
	3124		
	4123	$\frac{1\!-\!5x\!+\!6x^2\!-\!x^3}{(1\!-\!2x)(1\!-\!4x\!+\!2x^2)}$	Thm. 3.2
9	2341	$\frac{1-3x+x^2}{(1-x)(1-3x)}$	Thm. <mark>3.3</mark> /A024175
10	2431	$\tfrac{1-8x+23x^2-27x^3+8x^4+5x^5-x^6}{(1-2x)^2(1-5x+6x^2-x^4)}$	Thm. 3.5
11	3142	$\tfrac{1-13x+69x^2-192x^3+297x^4-244x^5+82x^6+9x^7-11x^8+x^9}{(1-x)(1-3x+x^2)(1-10x+37x^2-61x^3+39x^4+x^5-5x^6)}$	Thm. 4.4
12	3214		
	4132	_	
	4213	$\frac{(1-2x)(1-4x+2x^2)}{(1-x)(1-6x+9x^2-x^3)}$	Thm. 3.8/A080938
13	3241		
	4231	$\frac{1 - 8x + 21x^2 - 18x^3 + x^5}{(1 - 3x)(1 - 6x + 10x^2 - 3x^3 - x^4)}$	Thm. 3.9
14	3421	$\tfrac{(1\!-\!x)(1\!-\!6x\!+\!10x^2\!-\!2x^3\!-\!2x^4)}{(1\!-\!3x\!+\!x^2)(1\!-\!5x\!+\!6x^2\!-\!x^4)}$	Thm. 3.10
15	4321	Too lengthy to state here	Thm. 4.6

BMRS conjecture that C(w) has a rational generating function for every word w.

Which of these properties does *C* have:

- 1. Every proper subclass is rational:
- 2. Every proper finitely based subclass is rational:
- 3. Every proper well-quasi-ordered subclass is rational:

BMRS conjecture that C(w) has a rational generating function for every word w.

Which of these properties does *C* have:

- 1. Every proper subclass is rational: No!
- 2. Every proper finitely based subclass is rational: Yes!
- 3. Every proper well-quasi-ordered subclass is rational: (open)

BMRS conjecture that C(w) has a rational generating function for every word w.

Which of these properties does *C* have:

- 1. Every proper subclass is rational: No!
- 2. Every proper finitely based subclass is rational: Yes!
- 3. Every proper well-quasi-ordered subclass is rational: (open)
- S(321) has properties 2 and 3 (Albert, Brignall, Ruškuc, & Vatter 2019).
- ► **S**(312) has all three properties (Albert & Atkinson 2005).

- I. Patterns in Catalan words
- **II.** Infinite antichain of Catalan words
- III. Rationality of finitely based classes

Define A = $\{012\ 012\ 123\ 123, 012\ 012\ 012\ 123\ 234\ 234, 012\ 012\ 012\ 123\ 234\ 345\ 345, 012\ 012\ 012\ 123\ 234\ 345\ 456\ 456, \dots\}.$

A is an infinite set of Catalan words such that no word contains another word as a pattern — an infinite antichain.

Define A = $\{012\ 012\ 123\ 123, 012\ 012\ 012\ 123\ 234\ 234, 012\ 012\ 012\ 123\ 234\ 345\ 345, 012\ 012\ 012\ 123\ 234\ 345\ 456\ 456, \dots\}.$

A is an infinite set of Catalan words such that no word contains another word as a pattern — an infinite antichain.

Theorem (T. & Vatter 2025+): C is not a well-quasi-order (wqo): there exists an infinite antichain in C.

Justin Troyka <jmtr to Vince ▼</jmtr 	Jul 1, 2025, 3:07 AM (6 days ago)	☆	٢	←	Reply			
Sounds like a great plan. I'll see you next week! Maybe an infinite antichain of Catalan words will come to me in a dream while I'm flying over the Atlantic.								
Justin Troyka								
•••								
Vince Vatter to me 👻	Jul 1, 2025, 3:16 AM (6 days ago)	☆	٢	←	Reply			
A thought that just occurred to me it might be enlightening to take an Av(321) antichain, convert to panel encoding, and convert back to Catalan word although I guess it might *not* convert back. I'm flying over tomorrow, so maybe I'll have an antichain thought before you.								
Vince Vatter to me ▼	Jul 2, 2025, 1:48 PM (5 days ago)	☆	٢	←	Reply			
Hi Justin,								
On the plane, I think I came up with an antichain, or at least, something that makes me suspect we can build an infinite antichain of Catalan words.								

Why is an infinite antichain significant?

- It means that not all pattern-avoiding classes can be defined by a finite set of patterns, since C(A) has an infinite basis.
- It allows us to define an uncountable set of pattern-avoiding classes, all with different enumerations: {C(R): R ⊆ A}.

 In a sense, *C* has greater complexity than quasi-orders that do not have infinite antichains. (Contrast with the Robertson–Seymour Theorem about graph minors; contrast with Albert & Atkinson 2005 on *S*(312).)

Why is an infinite antichain significant?

- It means that not all pattern-avoiding classes can be defined by a finite set of patterns, since C(A) has an infinite basis.
- It allows us to define an uncountable set of pattern-avoiding classes, all with different enumerations: {C(R): R ⊆ A}.

 In a sense, *C* has greater complexity than quasi-orders that do not have infinite antichains. (Contrast with the Robertson–Seymour Theorem about graph minors; contrast with Albert & Atkinson 2005 on *S*(312).)

Corollary (T. & Vatter 2025+): There exist uncountably many sets $R \subseteq C$ such that the generating function for C(R) is not rational (or D-algebraic) (or even computable!).

- I. Patterns in Catalan words
- II. Infinite antichain of Catalan words
- **III.** Rationality of finitely based classes

Theorem (T. & Vatter 2025+): If R is a non-empty finite subset of C, then C(R) has a rational generating function.

Our proof is similar to the proof of the same property of S(321) by Albert, Brignall, Ruškuc, & Vatter 2019. We rely on the fact that every regular language has a rational generating function.

Theorem (T. & Vatter 2025+): If R is a non-empty finite subset of C, then C(R) has a rational generating function.

Our proof is similar to the proof of the same property of S(321) by Albert, Brignall, Ruškuc, & Vatter 2019. We rely on the fact that every regular language has a rational generating function.

- 1. There exist a, b such that $C(R) \subseteq C((012...a)^b)$.
- The panel encoding of C((012...a)^b) maps each Catalan word to a word over a finite alphabet, and the image of this encoding is a regular language.
- 3. Within this regular language, the set of words corresponding to C(R) is a regular language.

1. There exist a, b such that $C(R) \subseteq C((012...a)^b)$.

Example: $R = \{01120\}$. 01120 is contained in 0123 0123 0123 (using a = 3 and b = 3). Then $C(01120) \subseteq C(0123 0123 0123)$.

The panel encoding of C((012...a)^b) maps each Catalan word to a word over a finite alphabet, and the image of this encoding is a regular language.

This is almost exactly the same as in ABRV 2019.

Example: We will encode $001120123342331 \in C(012301230123)$ as a word over the alphabet $\{0, 0, 0, 0, 0, 1, 2, \#\}$.

$001120 \underbrace{123342331}_{}$	$\overset{\leftrightarrow}{0}\underline{1223122}0$	0 0 112011
001120	$\overrightarrow{0}$	0 0 112011

The panel encoding is read from the second row:

 $00112\overset{\rightarrow}{0} \# \overset{\leftrightarrow}{0} 0 \# \overset{\leftarrow}{0} 112011$

- The panel encoding of C((012...a)^b) maps each Catalan word to a word over a finite alphabet, and the image of this encoding is a regular language.
- Avoiding (012...a)^b means there are < b underlined subwords in each step, and so each block of the panel encoding has < b left arrows and < b right arrows. This is what makes the language regular!
- The language of panel encodings is the same as in ABRV, but with one extra condition: each block of the panel encoding starts with $\stackrel{\leftarrow}{0}$ or $\stackrel{\leftrightarrow}{0}$ except the first block.

3. Within this regular language [of panel encodings], the set of words corresponding to C(R) is a regular language.

As in ABRV, we can use a transducer on panel encodings that non-deterministically marks an occurrence of some pattern and checks whether it is σ .

Example: $\sigma = 01120$

 $\begin{array}{c} 00112\overrightarrow{0} \ \# \ \overrightarrow{0} 0 \ \# \ \overleftarrow{0} 112011 \ \rightarrow \ 00112 \ \overrightarrow{0} \ \# \ \overrightarrow{0} 0 \ \# \ \overleftarrow{0} 112011 \\ \rightarrow \ 12 \ \overrightarrow{} \ \# \ \overleftarrow{0} 0 \ \# \ \overleftarrow{0} 2 \\ \rightarrow \ 01120 \end{array}$

Further questions

- Is there some kind of symmetry on Catalan words to explain why so many classes have the same enumeration? ("Recursive reversal")
- Can we bound the degree of the rational generating function in order to automatically enumerate classes?
- Can our proof of rationality be adapted to prove the rationality of the bivariate generating function tracking descent number?
- Is every wqo class of Catalan words rational?
- Conjecture: for $w \in C_k$, $|C_n(w)|$ is maximized by $w = 0^k$.