Geometric grid classes and lettericity

Vince Vatter University of Florida

Permutation Patterns 2025

Figure 2: A permutation in the X-class, $\pi = (2, 12, 10, 4, 9, 6, 8, 7, 5, 11, 13, 3, 1)$.

Geometric grid classes Defined by example

 $\notin \operatorname{Geom} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$

Figure 2: The basis for the class of permutations that can be drawn on a circle.

 $1 - 6x + 12x^2 - 1$

$$\frac{0x^3 + 5x^4 + 2x^5 - 2x^6}{-2x^2)(1-x)^3}$$

Theorem. Every geometrically griddable class is well-quasi-ordered. (No infinite antichains.)

Theorem. Every geometrically griddable class is finitely based. (Defined by a finite list of forbidden permutations.)

Theorem. Every geometric grid class is in bijection with a regular language. (And thus has a rational generating function.)

Albert, Michael H.; Atkinson, M. D.; Bouvel, Mathilde; Ruškuc, Nik; Vatter, Vincent Geometric grid classes of permutations. Trans. Am. Math. Soc. 365, No. 11, 5859-5881 (2013).

Inversion graphs (Aka permutation graphs)

FIG. 3. The containment order on percorresponding inversion graphs.

FIG. 3. The containment order on permutations and the induced subgraph order on their

Letter graphs

Let $\mathscr{P} \subseteq \Sigma^2$ be a fixed set of ordered pairs of symbols from Σ . To each word $w = w_1 w_2 \dots w_n$ where $w_i \in \Sigma$ we assign its letter graph $G(\mathcal{P}, w)$ in the following way:

 $V(G(\mathscr{P},w)) = \{1,2,\ldots,n\},\$ $E(G(\mathscr{P},w)) = \{\{i,j\}; w_{\min(i,j)}, w_{\max(i,j)} \in \mathscr{P}\}.$ The vertices of $G(\mathcal{P}, w)$ are naturally labelled with the symbols of w.

Petkovšek, Marko

Letter graphs and well-quasi-order by induced subgraphs. Discrete Math. 244, No. 1-3, 375-388 (2002).

Fig. 1. C_6 as a 3-letter graph ($\mathcal{P} = \{ac, ba, cb, bb\}$).

 \mathbf{a}

Letter graphs

Theorem. For $n \ge 3$, the lettericity of P_n is $\lfloor \frac{n+4}{3} \rfloor$

Ferguson, Robert On the lettericity of paths. Australas. J. Comb. 78, Part 2, 348-351 (2020).

Conjecture 1. Let X be a class of permutations and \mathcal{G}_X the corresponding class of permutation graphs. Then X is geometrically griddable if and only if \mathcal{G}_X is a class of k-letter graphs for a finite value of k.

- the pair $(a_{k\ell}, a_{k\ell})$ in \mathcal{P} .

Alecu, Bogdan; Lozin, Vadim; de Werra, Dominique; Zamaraev, Viktor Letter graphs and geometric grid classes of permutations: characterization and recognition. Discrete Appl. Math. 283, 482-494 (2020).

• $M_{k,\ell} = 1$, then the points lying in the cell $C_{k,\ell}$ form an independent set in the permutation graph of π . Therefore, we do not include the pair $(a_{k\ell}, a_{k\ell})$ in \mathcal{P} .

• $M_{k,\ell} = -1$, then the points lying in the cell $C_{k,\ell}$ form a clique in the permutation graph of π . Therefore, we include

• two cells $C_{k,\ell}$ and $C_{s,t}$ are independent with k < s and $\ell < t$, then no point of $C_{k,\ell}$ is adjacent to any point of $C_{s,t}$ in the permutation graph of π . Therefore, we include neither $(a_{k\ell}, a_{st})$ nor $(a_{st}, a_{k\ell})$ in \mathcal{P} .

• two cells $C_{k,\ell}$ and $C_{s,\ell}$ are independent with k < s and $\ell > t$, then every point of $C_{k,\ell}$ is adjacent to every point of $C_{s,t}$ in the permutation graph of π . Therefore, we include both pairs $(a_{k\ell}, a_{st})$ and $(a_{st}, a_{k\ell})$ in \mathcal{P} .

• two cells $C_{k,\ell}$ and $C_{s,\ell}$ share a column, i.e., k = s, then we look at the sign (direction) associated with this column and the relative position of the two cells within the column.

- If $c_k = 1$ (i.e., the column is oriented from left to right) and $\ell > t$ (the first of the two cells is above the second one), then only the pair $(a_{k\ell}, a_{kt})$ is included in \mathcal{P} .

- If $c_k = 1$ and $\ell < t$, then only the pair $(a_{kt}, a_{k\ell})$ is included in \mathcal{P} .

- If $c_k = -1$ (i.e., the column is oriented from right to left) and $\ell > t$ (the first of the two cells is above the second one), then only the pair $(a_{kt}, a_{k\ell})$ is included in \mathcal{P} .

- If $c_k = -1$ and $\ell < t$, then only the pair $(a_{k\ell}, a_{kt})$ is included in \mathcal{P} .

• two cells $C_{k,\ell}$ and $C_{s,\ell}$ share a row, i.e., $\ell = t$, then we look at the sign (direction) associated with this row and the relative position of the two cells within the row.

- If $r_{\ell} = 1$ (i.e., the row is oriented from bottom to top) and k < s (the first of the two cells is to the left of the second one), then only the pair $(a_{s\ell}, a_{k\ell})$ is included in \mathcal{P} .

- If $r_{\ell} = 1$ and k > s, then only the pair $(a_{k\ell}, a_{s\ell})$ is included in \mathcal{P} .

- If $r_{\ell} = -1$ (i.e., the row is oriented from top to bottom) and k < s, then only the pair $(a_{k\ell}, a_{s\ell})$ is included in \mathcal{P} . - If $r_{\ell} = -1$ and k > s, then only the pair $(a_{s\ell}, a_{k\ell})$ is included in \mathcal{P} .

Figure 2: A permutation in the X-class, $\pi = (2, 12, 10, 4, 9, 6, 8, 7, 5, 11, 13, 3, 1)$.

Geometric grid classes Defined by example

THEOREM 1.1. The permutation class C is geometrically griddable if and only if the corresponding graph class $G_{\mathcal{C}}$ has bounded lettericity.

$t(1+2ur) \times u(1+2tr)$ for which $\pi \in \text{Geom}(M^*)$.

Alecu, Bogdan; Ferguson, Robert; Kanté, Mamadou Moustapha; Lozin, Vadim V.; Vatter, Vincent; Zamaraev, Victor Letter graphs and geometric grid classes of permutations. SIAM J. Discrete Math. 36, No. 4, 2774-2797 (2022).

PROPOSITION 6.7. Suppose that the permutation π has only trivial monotone intervals, that $\pi \in \text{Grid}(M)$ for a $0/\pm 1$ matrix M of size $t \times u$, and that $G_{\pi} \cong \Gamma_D(w)$ where $|\Sigma| \leq r, D \subseteq \Sigma^2$, and $w \in \Sigma^*$. Then there is a $0/\pm 1$ matrix M^* of size at most

What is the largest lettericity of an n-vertex graph?

large enough.

n-vertex graphs G with $l(G) > \alpha n$.

Taking base 2 logarithms we have

Since $1/2 > \alpha^2$ this is impossible when *n* is large. \Box

Petkovšek, Marko Letter graphs and well-quasi-order by induced subgraphs. Discrete Math. 244, No. 1-3, 375-388 (2002).

By a counting argument we now improve this bound to l(n) > 0.707n, provided that n is

Theorem 7. For each $\alpha < (\sqrt{2}/2)$ there is an N such that for all n > N there are

Therefore

$$2^{\binom{n}{2}} \leq n! k^n 2^{k^2} \leq n^n (\alpha n)^n 2^{(\alpha n)^2}.$$

$$\left(\frac{1}{2}-\alpha^2\right)n^2 \leq 2n \lg n + \left(\frac{1}{2}+\lg \alpha\right)n.$$

We *can* just give each vertex its own letter (n-vertex graph has lettericity at most n).

We can "save" at least one letter by have the first and last vertex encoded by the same letter:

abcd... a

Save two letters?

with 2k vertices that is a k-letter graph for a word of the form

inserting new letters into the middle of w, and thus $\ell(G) \leq n - k$.

Mandrick and Vatter, Bounds on the lettericity of graphs Electronic J. Comb. (2024), P4.53

- **Proposition 1.** Suppose G is a graph with n vertices containing an induced subgraph H
 - $w = \ell_1 \, \ell_2 \dots \ell_k \, \ell_{\pi(1)} \, \ell_{\pi(2)} \dots \ell_{\pi(k)}$
- for some permutation π of $\{1, \ldots, k\}$. Then, w can be extended to a lettering of G by

an induced subgraph with 2k vertices that is a k-letter graph on the word

Thus, $\ell(G) \leq n - k$ by Proposition 1.

Mandrick and Vatter, Bounds on the lettericity of graphs Electronic J. Comb. (2024), P4.53

- **Theorem 3.** For every k and each graph G on $n \ge 2(k-1) + 2^{2(k-1)} + 1$ vertices, G has
 - $w = \ell_1 \, \ell_2 \dots \ell_k \, \ell_k \dots \ell_2 \, \ell_1.$

Corollary. For every n-vertex graph G, we have $\ell(G) \le n - \frac{1}{2}\log_2 n$

Proposition. For almost all graphs G, no three vertices can be encoded by the same letter in a lettering of G.

Mandrick and Vatter, Bounds on the lettericity of graphs Electronic J. Comb. (2024), P4.53

 $w = w_1 a w_2 a w_3 a w_4.$

Theorem. For almost all graphs G on n vertices, $\ell(G) \ge n - (2\log_2 n + 2\log_2 \log_2 n).$ **Theorem.** For all graphs G on n vertices, $\ell(G) \le n - \frac{1}{2} \log_2 n.$

Mandrick and Vatter, Bounds on the lettericity of graphs Electronic J. Comb. (2024), P4.53

Theorem. For almost all graphs G on n vertices, $\ell(G) \ge n - (2\log_2 n + 2\log_2 \log_2 n).$

Mandrick and Vatter, Bounds on the lettericity of graphs Electronic J. Comb. (2024), P4.53

What is the expected "lettericity" of permutation of length n?

Mandrick, in preparation: $\leq 0.4132n$,

but that is just using "skinny grid classes".

What is the expected "lettericity" of permutation of length n?

Mandrick, in preparation: $\leq 0.4132n$,

but that is just using "skinny grid classes".

Thank you.

